

Nielsen Confidential

Nielsen ID3 Tag Validator SDK Developer Guide

Copyright © 2016 The Nielsen Company (US) LLC. All rights reserved.

Nielsen and the Nielsen Logo are trademarks or registered trademarks of CZT/ACN Trademarks, L.L.C.

Other company names, products and services may be trademarks or registered trademarks of their respective
companies.

This documentation contains the intellectual property and proprietary information of The Nielsen Company (US), LLC.
Publication, disclosure, copying, or distribution of this document or any of its contents is prohibited.

Detailed Revision History

Revision Date Description Author(s)/Editor(s)

A 2014-08-05 Initial Draft Lois Price / Lore Eargle

B 2015-05-27 Revised for release 1.5 Lois Price
Lore Eargle (editor)
Amy Gaither (editor)

C 2016-06-15 Revised for SDK release 1.7 Lois Price
Lore Eargle (editor)

Nielsen Confidential
Revision 1.7 2

Nielsen ID3 Tag Validator SDK Developer Guide

Contents

Summary 4

Purpose of the SDK 4

Audience for this User Guide 4

Out of Scope 5

Related Documents 5

Customer Support 5

Architecture of the ID3 Tag Validator SDK 6

Quick Start to the ID3 Tag Validator SDK 7

Contents of the Nielsen ID3 Tag Validator SDK 8

The Software Interface: CId3TagValidator 11

Overview of CId3TagValidator 11

CId3TagValidator (The Constructor) 12

ProcessData() 15

GenerateSummaryReport() 15

ID3 Tag Validator Callback Class 15

Overview 15

Classes and Data Types Used by the Callback 16

The Reported Test Results 22

The Sample Application 33

NielsenId3TagValidator.cpp 34

NielsenValidatorParameters (.cpp and .h) 34

NielsenValidatorFileReader (.cpp and .h) 35

NielsenValidatorLogger (.cpp and .h) 36

Running the Sample Application 37

List of Figures

Figure 1 – Architecture of the ID3 Tag Validator SDK 6

Figure 2 – ID3 Tag Validator Sample Application 33

List of Tables

Table 1 – ID3 Tag Validator SDK Contents 9

Table 2 – Constructor Arguments 13

Nielsen Confidential
Revision 1.7 3

Nielsen ID3 Tag Validator SDK Developer Guide

Nielsen Confidential
Revision 1.7 4

Nielsen ID3 Tag Validator SDK Developer Guide

Summary

Purpose of the SDK

As part of its strategy to measure audience viewing of content on consumer devices, Nielsen
supports or endorses a variety of products that generate Nielsen ID3 tags and insert them
into MPEG-2 transport streams. C/C++ developers may use Nielsen ID3 Tag Validator
Software Development Kit (SDK) to create applications that monitor ID3 tags and diagnose
errors in those tags.

These are just two of the possible uses of applications based on the Nielsen ID3 Tag
Validator SDK:

● The Validator application may process a file of encrypted ID3 tags (for example, the
output of the PCM-to-ID3 SDK sample application). In response, the Validator
application delivers a summary report that includes a list of checks performed on the
stream. Each check is assessed simply as <pass/fail/warning>.

● The Validator application may process a transport stream with embedded Nielsen
ID3 tags. Again, the Validator application delivers a pass/fail summary report. In
addition, the SDK delivers periodic reports on the “health” of the ID3 tags included in
the stream, where the report interval is configurable.

The Validator SDK uses a set of callback functions within a C++ class to deliver both its
periodic and summary reports. The callback functions give you (the developer) full control
over the format of the reports and the method used to deliver them.

Audience for this User Guide

If you are an experienced C/C++ programmer, the Nielsen ID3 Tag Validator SDK allows you
to create applications that analyze and evaluate Nielsen ID3 tag streams. This user guide
provides descriptions of all functions exposed through the application programming interface
(API) of the SDK software. Combined with the in-line comments in the sample application,
this guide also provides examples illustrating how the API functions and callbacks are to be
used.

The document assumes that you have working knowledge of the following:

● C/C++ software development on Microsoft​® ​Windows operating system and/or the
Linux​®​ platforms

● The basics of Nielsen ID3 Tag generation and insertion

● The use of SDKs in developing end-user applications.

Nielsen Confidential
Revision 1.7 5

Nielsen ID3 Tag Validator SDK Developer Guide

Out of Scope

This document does not provide detailed information about the format of Nielsen ID3 tags or
about their role in audience measurement. For such information, please refer to the ​Nielsen
PCM to ID3 SDK Developer’s Guide​.

This document concentrates on using the API in developing software applications. For a
detailed description of the meaning of each of the thirty tests listed in the summary report and
in periodic reports, please refer to the ID3 Tag Validator Application User Guide.

Related Documents

Apple. iOS Developer Library, “HTTP Live Streaming Metadata Spec.”
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/HTTP_Live_St
reaming_Metadata_Spec/2/2.html​.

Nielsen ID3 Tag Validator Application User Guide. ​This manual describes in detail how to run
the sample application and how to use it as a diagnostic tool.

Nielsen PCM-to-ID3 SDK Developer’s Guide. ​This manual describes how to use the
PCM-to-ID3 SDK to generate Nielsen ID3 tags. It provides an overview of the format of
Nielsen ID3 tags and of their role in measuring audience viewing on a variety of consumer
devices.

Customer Support

For technical support, please contact your Nielsen representative.

Nielsen Confidential
Revision 1.7 6

https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/2/2.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/2/2.html

Nielsen ID3 Tag Validator SDK Developer Guide

Architecture of the ID3 Tag Validator SDK

Figure 1 – Architecture of the ID3 Tag Validator SDK

Figure 1 illustrates the general architecture of the ID3 Tag Validator SDK.

● The dark blue box represents the ID3 Tag Validator Engine, which extracts ID3 tags
from the input data and analyzes the tags. Periodically it issues status reports, and
upon request, it delivers a summary report to the calling application.

● The light blue rectangle is the interface that developers use to deliver instructions to
the SDK libraries.

● The green boxes represent source code for sample-application modules, provided as
examples of how the SDK may be used.

Nielsen Confidential
Revision 1.7 7

Nielsen ID3 Tag Validator SDK Developer Guide

Quick Start to the ID3 Tag Validator SDK

Classes

The ID3 Tag Validator SDK exposes two primary classes that you will use in creating your
application:

● CId3TagValidator​​ is the primary interface to the ID3 Tag Validator libraries. It
exposes the functions that you use to deliver data to the SDK libraries and to
generate a summary report.

● To enable the SDK to deliver reports and log messages to your application, you
derive a class from the base class, ​Id3TagValidatorLoggerBase​​.

Create Your Application

1. Derive a class from ​Id3TagValidatorLoggerBase​​. Your class must implement these two
functions:

int​ ​LogMessage​(​int​ ​code​, ​const​ ​char​ *​message​)

The ID3 Tag Validator SDK invokes a call to LogMessage each time that it has
an error or status message to deliver. If the code is a negative number, the
message is an error message. If ‘code’ is set to 0, then the message is usually a
status message. There are three other special settings of ‘code’:

o 11111 indicates that ‘message’ is a detailed listing of a decrypted ID3 tag.

o 22222 indicates that ‘message’ reports the fields of a NAES 2 or NAES 6
watermark extracted directly from the audio stream.

o 12121 indicates that ‘message’ is a comma-delimited listing of a decrypted
ID3 tag.

int​ ​IssueStatusReport(ValidatorOutputFields_t​ *​pValidatorStatus​)

The ID3 Tag Validator SDK invokes a call to IssueStatusReport each time that it
has a periodic report to deliver. It delivers to the calling application a pointer to a
structure that holds the following:

● A list of .detected Nielsen SIDs.

● The settings of fields in the ID3 INFO tag.

● The results of up to 30 executed tests, each with an indication of pass/fail.

Note that IssueStatusReport() is used to deliver both periodic and summary
reports. The sample application source code delivered with the SDK provides an
example of a handler for this callback.

2. Create an instance (​pValidatorLogger​) of the Logger class that you implemented.

3. Declare a variable (​nInputType​) that defines the input either as a stream of encrypted ID3
tags or as an MPEG-2 transport stream.

Nielsen Confidential
Revision 1.7 8

Nielsen ID3 Tag Validator SDK Developer Guide

4. Declare a variable (​nPeriodicReport​) that specifies the type of output report(s):

0 = Generate only the two required reports (Summary and Log)

1 = Generate periodic reports, but no tag listings

2 = Generate a detailed tag-listing, but no periodic report, no comma-delimited listing.

3 = Generate both periodic reports AND a detailed tag listing, but no
comma-delimited listing.

4 = Generate a comma-delimited tag listing, but no periodic reports or detailed tag
listings.

5 = Generate a comma-delimited tag listing and periodic reports, but no detailed tag
listing.

6 = Generate a detailed tag listing and a comma-delimited listing, but no periodic
reports.

7 = Generate all possible reports.

5. If you elected to create periodic reports (options 1, 3 and 7), set ​nPeriodicReportInterval
to the number of seconds between periodic reports.

6. Create an instance of CId3TagValidator, as follows:

pProcessor​ ​=​ ​new​ ​CId3TagValidator(​ ​nInputType,nPeriodicReportFlag,
nPeriodicReportInterval, pValidatorLogger​);

7. Programmatically open a file or stream that holds the ID3 tags or transport stream.to be
evaluated or monitored.

8. Repeatedly deliver blocks of data to ​pProcessor​, using this call:

Processor->ProcessData((uint8_t *)pData​, ​nDataLength​ ​);

9. If you are processing a file, generate a summary report when the entire file has been
processed:

pProcessor->GenerateSummaryReport();

10. Release all resources.

Contents of the Nielsen ID3 Tag Validator SDK

The SDK includes the header files, libraries, executables, and documents listed in Table 1.
Each SDK package includes only the software components that apply to the
platform/compiler configuration named in the package title. The subdirectory holding each of
the components may vary slightly from the folder named in the table.

The SDK has been tested on Microsoft Windows 7 and Microsoft Windows 8 operating
systems. Project files are included for Visual Studio​®​ 2010, Visual Studio 2012, Visual Studio
2013 development systems. Other versions of Visual Studio may be available upon request.

Linux software has been tested on Fedora™ 19 (64-bit platform).

Nielsen Confidential
Revision 1.7 9

Nielsen ID3 Tag Validator SDK Developer Guide

For Apple​®​, the SDK has been has been tested on Yosemite OS, 64-bit, compiled with the
Clang compiler.

Table 1 – ID3 Tag Validator SDK Contents

Folder Platform Contents + (Description)

NielsenApp Linux NielsenId3TagValidator
Each Linux package includes one executable, provided for
demonstration/testing/debugging purposes.

Apps/Windows/x86/ Windows NielsenId3TagValidator.exe
(A 32-bit build of the sample application)

Apps /Windows/x64/ Windows NielsenId3TagValidator.exe
(A 64-bit build of the sample application)

docs All ID3 Tag Validator Application User Guide
Nielsen ID3 Tag Validator SDK Release Notes
ID3 Tag Validator SDK User Guide (this document)
Validator_Readme.txt (legal notices)

inc All AC3InserterErrorCodes.h
Id3TagValidator.h
Id3TagValidatorLoggerBase.h
IGenericValidatorApi.h
ITagValidatorReader.h
IValidatorStreamProcessor.h
ValidatorOutputDefinitions.h
w32stdint.h (Windows only)
(Header files required to use the libraries in “lib” folder.)
Important The contents of these header files must not be changed.

lib (or lib subdirectory – 32-bit Linux) Linux libCryptopp.a
libDecodeAc3.a
libId3TagAnalyzer.a
libId3TagUtils.a
libTsId3TagValidatorApi.a
libTsProcessor.a
(Static libraries that the sample application must link to,
32-bit version of Linux)

lib (or lib subdirectory – 64-bit Linux) Linux libCryptopp.a
libDecodeAc3.a
libId3TagAnalyzer.a
libId3TagUtils.a
libTsId3TagValidatorApi.a
libTsProcessor.a
(Static libraries that the sample application must link to,
64-bit version of Linux)

Nielsen Confidential
Revision 1.7 10

Nielsen ID3 Tag Validator SDK Developer Guide

lib/Windows_NT/Win32/vs2010/dynami
c
lib/Windows_NT/Win32/vs2012/dynami
c
lib/Windows_NT/Win32/vs2013/dynami
c

Windows

LibTsId3TagValidatorApi.lib
(Static library that sample application must link to, for 32-bit
platform, compiled with the corresponding version of Visual
Studio, with dynamically linked runtime libraries)

lib/Windows_NT/Win32/vs2010/static
lib/Windows_NT/Win32/vs2012/static
lib/Windows_NT/Win32/vs2013/static

LibTsId3TagValidatorApi.lib
(Static library that sample application must link to, for 32-bit
platform, compiled with the corresponding version of Visual
Studio, with statically linked runtime libraries)

lib/Windows_NT/x64/vs2010/dynamic
lib/Windows_NT/x64/vs2012/dynamic
lib/Windows_NT/x64/vs2013/dynamic

LibTsId3TagValidatorApi.lib
(Static library that sample application must link to, for 64-bit
platform, compiled with the corresponding version of Visual
Studio, with dynamically linked runtime libraries)

lib/Windows_NT/x64/vs2010/static
lib/Windows_NT/x64/vs2012/static
lib/Windows_NT/x64/vs2013/static

LibTsId3TagValidatorApi.lib
(Static library that sample application must link to, for 64-bit
platform, compiled with the corresponding version of Visual
Studio, with statically linked runtime libraries)

NielsenApp All NielsenId3TagValidator.cpp
NielsenValidatorFileReader.cpp
NielsenValidatorFileReader.h
NielsenValidatorLogger.cpp
NielsenValidatorLogger.h
NielsenValidatorM3u8Reader.cpp
NielsenValidatorM3u8Reader.h
NielsenValidatorParameters.cpp
NielsenValidatorParameters.h
Makefile (Linux and Mac)
NielsenId3TagValidator2010.sln (Windows only)
NielsenId3TagValidtator2010.vcxproj (Windows only)
NielsenId3TagValidator2012.sln (Windows only)
NielsenId3TagValidator2012.vcxproj (Windows only)
(Source code and project files required to compile the
sample application whose executable is provided in the
apps folder).
Note Nielsen provides this source code as an example

of how to use the SDK libraries. The developer
may modify these files to meet the needs of his or
her application and to include proper error
checking.

Nielsen Confidential
Revision 1.7 11

Nielsen ID3 Tag Validator SDK Developer Guide

The Software Interface: CId3TagValidator

Overview of CId3TagValidator

The class CId3TagValidator is the primary interface to the set of Nielsen ID3 Tag Validator
SDK libraries. You may use this class to process, evaluate, and report on encrypted Nielsen
ID3 tags delivered in any of these “containers”:

● In buffers that hold ONLY encrypted ID3 tags, and no other data (for example, the
output of the PCM-to-ID3 SDK callback function).

● In buffers that hold encrypted ID3 tags, intermingled with other data (for example, the
log file created by the Nielsen ID3 tag sample application installed on tablet and
phone devices).

● In buffers of transport-stream data, where the transport stream contains a metadata
elementary stream that holds Nielsen ID3 tags. The metadata elementary stream
must be properly declared in the PMT, as specified in “HTTP Live Streaming
Metadata Specifications.” (See the ​References​ section of this document).

Regardless of the “container” that carries the Nielsen ID3 tags, CId3TagValidator accepts and
buffers blocks of data, then uses callback functions to deliver reports of its analysis.

CId3TagValidator is a very simple class. It exposes just three public functions: the constructor,
ProcessData(), and GenerateSummaryReport(). These functions are described in the
remainder of this section.

CId3TagValidator (The Constructor)

Use the CId3TagValidator constructor to do the following:

● Identify the type of stream to be processed (ID3 tag or transport stream)

● Specify which of the four optional callbacks you would like to receive. The optional
callbacks provide data for these reports:

o Periodic ​​reports​​, which are used primarily with streaming (as opposed to file-based)
input content. However, if the input stream is from a large file, periodic reports may
be of some use in identifying specific problem spots in the file. The SDK libraries
invoke the IssueStatusReport() function to deliver periodic reports at regular intervals.

o ID3 tag listing​​, which is a listing of all settings in a single decrypted Nielsen ID3 tag.
The SDK libraries invoke the LogMessage() function (with the ‘code’ parameter set to
11111) to deliver a listing of each ID3 tag encountered in the source stream.

o Watermark listing​​, which is a listing of NAES 2 and NAES 6 watermarks found in
AC-3 audio in the transport stream (if the input is a transport stream). The SDK
libraries invoke the LogMessage() function (with the ‘code’ parameter set to 22222) to
deliver a listing of each NAES 2 or NAES 6 watermark encountered in the source

Nielsen Confidential
Revision 1.7 12

Nielsen ID3 Tag Validator SDK Developer Guide

AC-3 audio stream.

o Comma-delimited tag listing: ​​which lists the key elements of a single ID3 tag in a single line
with comma-delimited fields. ​The SDK libraries invoke the LogMessage() function (with
the ‘code’ parameter set to 12121) to deliver a comma-delimited report of each ID3
tag encountered in the source stream.

● Define the interval between periodic reports (if periodic reporting is turned on)

● Identify the program to process, if the input is a multi-program transport stream. (Set
to -1 if input is not MPTS).

● Register your implementation of the callback class (through which the SDK libraries
deliver log messages and analysis reports to your application).

Data Types Used by the Constructor

The constructor uses two locally defined data types: ValidatorInputType_t and
Id3TagValidatorLoggerBase. The definition for ValidatorInputType_t appears below. The
definition of Id3TagValidatorLoggerBase appears on page .

// ValidatorInputType_t specifies the type of data that the

// ProcessData() call will receive (one buffer at a time).

// Selections are:

// * eTransportStreamType - ProcessData() receives buffers of MPEG-2

// transport-stream

// * eRawTagFileType - ProcessData() receives buffers of data that include

// raw (encrypted) Nielsen ID3 Tags.

typedef enum​ ​eValidatorInputType

{
eDataTypeUnknown,

eTransportStreamDataType,

eRawTagDataType

} ValidatorInputType_t​;

Other data types described in this section are defined in ​ValidatorOutputDefinitions.h​.

Constructor Arguments

The constructor creates the resources required to carry out the analysis, and it configures
components in accordance with the settings that it receives. Table 2 defines the constructor
arguments.

Table 2 – Constructor Arguments

Parameter Permissible Settings Notes

Nielsen Confidential
Revision 1.7 13

Nielsen ID3 Tag Validator SDK Developer Guide

ValidatorInputType_t nInputType eTransportStreamDataType
eRawTagDataType

Use this argument to specify
whether your application will
deliver buffers of transport
stream, or buffers of a text
stream that contains
encrypted Nielsen ID3 tags.

uint32_t​ ​nGeneratePeriodicReports 0 – do not generate any of
the three optional reports:
periodic reports, detailed tag
listings, or comma-delimited
tag listings.
1 – Generate periodic
reports, but not detailed or
comma-delimited tag listings.
2 – Generate detailed tag
listings, but not periodic
reports or comma-delimited
tag listings.
3 – Generate periodic reports
and detailed tag listings.
4 – Generate
comma-delimited tag listings,
but no periodic reports or
detailed tag listings.
5 – Generate periodic reports
and comma-delimited tag
listings only.
6 – Generate detailed tag
listings and comma-delimited
tag-listings, but no periodic
reports.
7 – Generate all three
optional report types.

Periodic reports are most
useful when the incoming
content is streaming (not read
from a file). However, with
very long files, periodic
reports may be useful in
identifying “problem spots” in
the content.
Tag listings are most useful
for diagnostic purposes.
Comma-delimited tag listings
do not provide all of the tag
details, but they are easy to
review in spreadsheet format.

Note that log messages are
not optional – they are always
generated.

The summary report is always
available post-processing,
even if none of the three
optional reports is selected.

uint32_t
nPeriodicReportIntervalInSeconds

Recommended setting is 30
seconds or greater.

If the periodic-reports flag is 1,
this value specifies the
number of seconds between
periodic reports.

int32_t​ ​nSelectedProgram -1 for SPTS
> 0 for MPTS

Specifies the program number
to process in a multiprogram
transport stream

Id3TagValidatorLoggerBase
*pLogger

Points to a callback class
object

It is your responsibility to
implement an object of type
Id3TagValidatorLoggerBase
for the purpose of receiving
and handling log messages,
tag listings, and ID3 Tag
analysis reports.

Nielsen Confidential
Revision 1.7 14

Nielsen ID3 Tag Validator SDK Developer Guide

ProcessData()

The ProcessData function accepts and processes a block of input data (either
transport-stream data or text content including encrypted ID3 tags). It buffers the incoming
data, then delivers the buffer to a transport-stream processor or directly to an ID3 tag
processor for parsing and analysis. The function accepts a pointer to a buffer of incoming
data, followed by an argument specifying the number of bytes in the buffer. The function
returns 0 if it completes successfully, or a negative value if it encounters an error. The
function declaration:

int​ ​ProcessData​(uint8_t *​pData​, uint32_t ​nSize​);

GenerateSummaryReport()

Your application must call GenerateSummaryReport()to generate the final report, after all
incoming content has been processed. After you call this function, the IssueStatusReport()
callback delivers the report to your application. The function returns 0 if and only if it finishes
successfully.

ID3 Tag Validator Callback Class

Overview

The ID3 Tag Validator SDK libraries deliver error and status messages as well as analysis
reports by invoking calls to public methods of a callback class. It is your responsibility as a
developer:

● To define a class derived from Id3TagValidatorLoggerBase.

● To implement the LogMessage() function to handle messages in a way that meets
the needs of your application. Be aware that the SDK delivers special message types
(as described above) by setting the code to 11111, 22222, or 12121. You may
assume that all other LogMessage calls (with code <= 0) are status or error logs.

● To implement the IssueStatusReport() function to receive reports in a way that meets
the needs of your application.

● To create a callback object, based on the class that you created, and to pass a
pointer to that object as the last argument of the CId3TagValidator constructor.

Nielsen Confidential
Revision 1.7 15

Nielsen ID3 Tag Validator SDK Developer Guide

Classes and Data Types Used by the Callback

The Base Class: Id3TagValidatorLoggerBase

The callback base class is defined on the next page. The object that you create must
implement both the LogMessage and the IssueStatusReport functions​.

class​ ​Id3TagValidatorLoggerBase

{

public​:

//! Special code used for debugging tag details

static​ ​const​ ​int​ ​cTagReportCode​ = ​11111​;

//! Special code used to report lines in comma-delimited file.
static​ ​const​ ​int​ ​cCommaDelimitedReportCode​ = 12121;

//! Special code used for debugging watermark details

static const int​ ​cWatermarkReportCode​ = ​22222​;

* \brief Default constructor

Id3TagValidatorLoggerBase​(​void​ ​){}

* \brief Default destructor

virtual​ ~​Id3TagValidatorLoggerBase​(​void){}

* \brief Delivers a status or error code and a detailed message.

virtual​ ​int​ ​LogMessage​(​int​ ​code​, ​const​ ​char​ *​message) = 0;

* \brief Issues a report of the current status of the ID3-tagging

process.

virtual​ ​int​ ​IssueStatusReport​(​ValidatorOutputFields​_t *​pValidatorStatus​) ​=
0;

};

Report Structure: ValidatorOutputFields_t

Both the periodic and summary reports are delivered in the ValidatorOutputFields_t structure,
defined below.

typedef​ ​struct​ structValidatorOutputFields

{

ValidatorReportType_t​ ​nReportType​;

Nielsen Confidential
Revision 1.7 16

Nielsen ID3 Tag Validator SDK Developer Guide

uint32​_t​ ​nTagTime​;

uint32​_t​ ​nDuration​;

uint32​_t​ ​nBreakoutType​;

ValidatorSidInfo​_t​ ​SidList​[​_​MAX_VALIDATOR_SIDS​_​];

uint16​_t​ ​nSidCount​;

ValidatorInfoTagValues​_t​ ​InfoTagSettings​;

ValidatorCheckData​_t​ ​StatusCheckList​[​eTotalValidatorChecks​];

} ValidatorOutputFields​_t​;

nReportType

The nReportType setting specifies whether this is a periodic or summary report. It is of type
ValidatorReportType_t, defined below. Note that periodic reports are delivered only if the
constructor is configured with nGeneratePeriodicReports set to 1 or 3.

//! Type of report: periodic or summary

typedef​ ​enum​ ​eValidatorReportType

{

eValidatorPeriodicReport​,

eValidatorSummaryReport,

eValidatorReportTypeUnknown

}​ ​ValidatorReportType_t​;

nTagTime

In a summary report, the nTagTime field is set to the “end” time of the last tag processed. In a
periodic report, the nTagTime is set to the start time of the most recently processed ID3 tag.
This field is used strictly as a “label” for the report, to distinguish it from earlier and
subsequent reports.

nDuration

For periodic reports, the nDuration setting represents the number of seconds since the last
periodic report (or, for the first periodic report, the number of seconds since the beginning of
the content).

For summary reports, nDuration specifies approximate length, in seconds, of all of the
processed content.

The calculation of the duration is based on the first and last tag times. For example, for the
summary report, the duration is the difference between the “last” tag time of the most recent
tag and the “first” tag time of the first decoded tag. If the tag times are in error the duration,
too, is in error.

Nielsen Confidential
Revision 1.7 17

Nielsen ID3 Tag Validator SDK Developer Guide

nBreakoutType

This is a value between 0 and 99 that represents the breakout type of this content. See
Appendix – Breakout Codes​ on page for breakout-type settings that are currently in effect.
Note that this field is now ignored by most downstream processes.

SidList

All reports delivered by IssueStatusReport() include a list of Nielsen SIDs that were included
in the processed tags. For summary reports, the SidList contains a list of all SIDs found
during the processing of the entire content. For periodic reports, the SidList holds only the
SIDs that were discovered during the current interval.

Each element of the SidList is defined as:

//! strValidatorSidInfo defines a single record in the SID list

//! Each record holds the SID value, the number of SIDs with that

//! value recorded during the report period, and the level (PC/FD)

//! of the watermark from which the SID was extracted.

typedef struct​ ​strValidatorSidInfo

{
uint32_t​ ​nSid​; ​// 16-bit SID

uint32​_t​ ​nNaes2SidCount​; ​// Number of EDUs with this NAES 2 SID

uint32​_t​ ​nNaes6SidCount​; ​// Number of EDUs with this NAES 6 SID

ValidatorSidLevel_t​ ​nLevel​; ​// specifies PC or FD (watermark level)

}​ ​ValidatorSidInfo_t;

nSidCount

The nSidCount setting specifies the number of entries in the SidList.

InfoTagSettings

This structure holds the settings of the INFO tag, which remain constant throughout an entire
piece of content. The user of your application may review these settings for validity. Please
check the PCM-to-ID3 SDK for proper settings of these fields.

typedef struct​ ​strValidatorInfoTagValues

{

//! Unique ID assigned by Nielsen. Three digits + null-terminator

uint8_t​ ​vendor_id[4];

//! 0 = reserved, 1 = in-home streaming devices, 2 = transcoder,

//! 3 = segmenter.

Nielsen Confidential
Revision 1.7 18

Nielsen ID3 Tag Validator SDK Developer Guide

uint8_t​ ​device_type​;

//! 16-byte unique device ID. Printable characters

uint8_t​ ​device_id[17];

//! 4-byte system version, plus null-terminator

uint8_t​ ​system_version[5];

//! 1-byte version of the Nielsen ID3 tag SDK

//! Major version = high-order nibble; minor version = low-order nibble

uint8_t sdk_version;

//! 16-byte ASCII text field holding codec name & bit rate, no spaces.

//! Examples: "AC3-5.1,384kbps", "AAC-HE,192bps". No longer required.

uint8_t​ ​audio_codec[17];

//! 48-byte distributor ID. Usually a URL beginning with “www”

uint8_t​ ​distributor_id[49];

} ​ValidatorInfoTagValues​_t;

StatusCheckList

The status checklist is an array of elements that identify the “status” (pass/fail/warning) of a
list of tests. Each element in the array represents a single test.

//! Information supplied with each "check" report

typedef struct strValidatorCheckData

{

//! Recommended label for this test

char ​strTestLabel[80];

//! Values: eNoStatus, eValidatorSuccess,

//! eValidatorWarning, eValidatorFailure

ValidatorOutputStatus_t nStatus;

//! Number of events or errors that were counted

//! for this "check" field

uint32_t nCount;

//! If we are checking an "event" that must occur,

Nielsen Confidential
Revision 1.7 19

Nielsen ID3 Tag Validator SDK Developer Guide

//! this is the minimum that we must see for the

//! check to pass (for the given period of time).

uint32_t nMin;

//! If we are checking a total number of errors,

//! this is the maximum number that may occur

//! in order for the check to pass.

uint32​_t​ ​nMax​;

} ​ValidatorCheckData​_t​ ;

Each element of the StatusCheckList represents either an “event” that must occur or an
“error.”

Following the nStatus field are three values:

● nCount​​ – the number of times that the event or error occurred during the period (for
periodic report) or during the entire content (for summary report).

● nMin​​ – if the field represents an “event,” nMin specifies the minimum number of
times the event must occur in order for the test to “pass.”

● nMax​​ – if the field represents an “error,” nMax specifies the maximum number of
times that the error may occur before the test is considered to “fail.”

Altogether 30 tests are represented in the StatusCheckList. Each test is represented by the enum
value of the same position. The enum values appear on the next page. The tests themselves
are described thoroughly in “​The Reported Test Results​” on page , with even more details
provided in the ​ID3 Tag Application User Guide​.

//! These are the checks performed, in the order that

//! they occur in the StatusCheckList array.

typedef enum​ ​eValidatorCheckCategories

{

eDataTagCheck​, ​// Based on number of DATA tags counted

eTagFormatCheck​, ​// Tag does not have slashes in correct places

eSequenceNumberCheck​, ​// Based on number of missing tag sequence numbers

eTimeGapCheck​, ​// Based on number of time-gaps between tags

eTagDurationCheck​, ​// Based on duration of tag (first time to last time)

eCidSidCheck​, ​// Based on value of CID SID compared to EDUs

eCidTsCheck​, ​// Check that TS is set to most recently passed 3 AM

eCidTsOffsetCheck​, ​// Based on value of CID TS + Offset, compared to EDU

eBreakoutTypeCheck​, ​// Reports change in breakout code

eWatermarkTimeCheck​, ​// Based on watermark time-code errors

Nielsen Confidential
Revision 1.7 20

Nielsen ID3 Tag Validator SDK Developer Guide

eWatermarkLevelCheck​, ​// Based on changing watermark level for a SID

eInfoTagCheck​, ​// Based on number of INFO tags counted

eInfoTagIntervalCheck​, ​// INFO tag interval outside of 290-310-second
range?

eITCidError​, ​// Either 1 or both of the INFO tag CIDs are not set to 0

eITOffsetError​, ​// 1 or both of INFO tag Seconds-Since are not set to 0​.

eITVendorIdError​, ​// Invalid or missing vendor ID in INFO tag

eITDeviceTypeError​, ​// Invalid or missing device type in INFO tag

eITDeviceIdError​, ​// Invalid or missing device ID in INFO tag

eITSystemVersionError​, ​// Invalid or missing version number in INFO tag

eITSdkVersionError​, ​// Invalid or missing SDK version number in INFO tag

eITDistributorIdError​, ​// Invalid or missing distributor ID in INFO tag

eTagPlacementCheck​, ​// Based on synchronization of tag with audio codes

eTagTimeCheck​, ​// Based on synchronization of PTS and tag times

eId3PesPacketCheck​, ​// Counts number of PES-packet headers.

ePesOwnerIdCheck​, ​// Based on presence of 'www.nielsen.com' within tag

eMetadataPesPtsCheck​, ​// Based on presence of PTS in the tag PES header

ePesStreamTypeCheck​, ​// based on correct stream type (0xbd) in PES header

eCompleteTagPayloadCheck​, ​// based on complete tag present in PES packet

ePmtDescriptorCheck​, ​// Based on presence of ID3 Tag descriptor in PMT
loop

ePmtElemStreamCheck​, ​// Based on ID3-tag elementary stream type in PMT
loop

eTotalValidatorChecks​ ​//30

} ​ValidatorCheckCategories_t​;

Nielsen Confidential
Revision 1.7 21

Nielsen ID3 Tag Validator SDK Developer Guide

The Reported Test Results

Overview

Note The previous section, “StatusCheckList,” describes the array that holds the 30 tests discussed

below.

Although IssueStatusReports() uses the same structure to deliver periodic reports and the
summary report, the meaning of each test or the criteria for passing the test may differ based
on the report type. In all cases, however, the scope of the test for periodic reports is limited to
the interval that the report covers. For the summary report, the test applies to all of the
content that was processed, from beginning to end.

Each of the tests returns a status of ​pass/fail​ (or, in some cases, ​warning​ or ​no status​). The
pass/fail status is simply a quick indicator of the overall status of the stream with respect to
the test in question. The <count/min/max> fields provide more information, often helping to
assess the severity of the problem if the status is reported as “fail.” Finally, for error test
failures, the status messages delivered via LogMessage() provide specific information about
each incident that contributed to the error-count.

In the examples below, the results of each test are represented as ​[Pass | Fail | Warning | No
Status] < count / min / max>​​ , where:

● Pass/fail​, obviously, indicates whether the ID3 tag stream passed or failed the test for
the period in-scope.

● Warning ​is typically issued when the test itself provides background information, but
does not contribute to the overall validity of the tags themselves.

● No status​ indicates that the test does not apply to this stream or to this interval of the
stream.

● Count​ indicates the number of events or errors counted for the scope of the report

● Min ​for an “event” check, indicates the minimum number of event occurrences for the
test to pass. For an “error” check, ​min​ is set to ​0​.

● Max ​for an “error” check, indicates the maximum number of errors tolerated before
the test is considered a failure. For an “event” check, ​max​ is set to ​0​.

If the status of a test is reported as ​fail​, the person using your application should take these
steps:

● Note the ​degree​​ to which the processed data failed the test by comparing the count to
the min or max value (whichever applies). Especially for a periodic report with a short
interval, a single error may be enough to trigger a report of ​fail​. Close analysis may
reveal the failure report is inconsequential because the report interval was so short.

● Check the log messages to determine the ​reason​​ for the failure report. If the log
message includes a time or sequence number, you may be able to match specific log
messages to the ​count​ value reported. On the following pages, typical log messages
are listed for each test. ​Be aware that the wording of the message strings may
change in future versions of the SDK; however, the corresponding error codes

Nielsen Confidential
Revision 1.7 22

Nielsen ID3 Tag Validator SDK Developer Guide

will not change.

● Refer to the​ ID3 Tag Application User Guide​ for more detailed information pertaining
to each of the thirty checks.

Test 1: DATA-Tag Check (eDataTagCheck)

For periodic reports and the summary report, the DATA-tag check indicates the number of
data tags detected for the period in-scope. That value is compared to the ​min​ value to
determine the pass/fail status of the test.

Ideally, DATA tags arrive at 10-second intervals. However, in the presence of many
watermarks, the tags may arrive more frequently.

Example

Pass <599/512/0>

In this case, 599 DATA tags were detected, compared to 512 required for the test to
pass.

Test 2: Tag-Format Check (eTagFormatCheck)

The Validator SDK inspects the placement of the first three forward slash (‘/’) characters after
the ​www.nielsen.com​ string in the Nielsen ID3 tag. It also verifies the correct placement of
the last ‘/’ characters in the string. This second check helps to determine the presence of
both transport-packet payloads that comprise a single ID3 tag. The Validator SDK declares a
tag-format error if one or more ‘/’ characters are missing or out of place.

The Validator SDK logs an error, too, if the spacing between PES headers in an incoming
transport stream indicates that the tag-length may be incorrect.

Note that Validator SDK versions prior to 1.7 sometimes declared tag-format errors if there
were non-Nielsen elements in the metadata PES (Packetized Elementary Stream). Version
1.7 logs instances of non-Nielsen ID3 tags, but does not count them as tag-format errors.

For periodic and summary reports, the tag-format check compares the number of tag-format
errors to the maximum number of errors permitted for the period.

Corresponding Log Messages

All of these log messages, which include an error code of ​_VALIDATOR_TAG_FORMAT_ERROR_
(​-51), are indications of tag-format errors.

Tag error: Separators missing.

Tag Error: ​Detected corrupted, partial, or non-Nielsen tag.

Tag Error: Error decoding ID3 tag.

Corrupted tag​ (slash error): Sequence Number xx, Tag Time xx.

Corrupted tag​ (checksum error): Sequence Number xx, Tag Time xx.

Nielsen Confidential
Revision 1.7 23

Nielsen ID3 Tag Validator SDK Developer Guide

Example

Pass <1/0/30>

There was 1 error, but up to 30 errors would have been permitted.

Test 3: Sequence-Number Check (eSequenceNumberCheck)

The sequence-number check indicates the number of that the Validator SDK detects an
out-of-order or missing sequence number during the report interval. For example, if the
Validator SDK detects that tag 102 follows tag 100, it reports a sequence number error
because tag 101 is missing.

Note that INFO tags sometimes occur out of order, especially at the beginning of the stream.
As long as the INFO tags are not missing from the stream altogether, it is acceptable for
INFO tags to fall slightly out of order.

If a facility uses a fail-over tag-inserter system, the tag sequence numbers of the primary and
fail-over system may not be synchronized. However, the tag times and watermark times of
the two systems should be close. At the point of the fail-over, there may be a tag overlap or a
tag gap of up to 9 seconds. If there are sequence number errors, but no tag-gap errors,
assume the sequence-number errors are the result of switching to a fail-over system and
ignore these errors.

Corresponding Log Message

The error code ​_V​ALIDATOR_SEQUENCE_NUMBER_ERROR​_​ (-52)​ indicates that a sequence
number is missing or out-of-order. This error is generated whenever the sequence number of
the current tag is not one greater than the sequence number of the previous tag.

These log messages may accompany the -52 error code:

Seqno Error and Gap in Tag Times (xx seconds): Sequence Number xx, Tag Time

xx (time string)

Seqno Error, No Time Gap: Sequence Number xx, Tag Time xx (time_string)

Example

Pass <1/0/2>

There was 1 missing sequence number for the in-scope period; however, up to 2
errors would have been tolerated.

Test 4: Time-Gap Check (eTimeGapCheck)

Under ideal conditions, each DATA tag begins when the previous tag ends. A notable
exception to this rule occurs when a tag stream includes ID3 tags from two different
tag-generators (a primary device and a fail-over device). If the tag start/stop times indicate a
time-overlap or a time-gap of more than 9 seconds between tags, Validator SDK reports a
time-gap error.

Nielsen Confidential
Revision 1.7 24

Nielsen ID3 Tag Validator SDK Developer Guide

Corresponding Log Message

The following log message, with an error code of ​_V​ALIDATOR_SEQUENCE_NUMBER_ERROR​_​ (​-52)
appears if the time gap is accompanied by a missing sequence number:

Seqno Error and Gap in Tag times (xx seconds): Sequence Number xx,
Tag Time xx​.

Error code ​_VALIDATOR_TAG_OVERLAP_ERROR_​ (​-74) indicates that two consecutive ID3 tags
overlap.

Example

Pass <0/0/2>

No gaps in time occurred between consecutive tags, but up to 2 such gaps would
have been permissible.

Test 5: Tag-Duration Check (eTagDurationCheck)

Under ideal conditions, a DATA tag spans 10 seconds. However, if 10 watermarks arrive in
less than 10 seconds, the tag-duration is shorter; in this case, a tag shorter than 10 seconds
is not considered to be faulty. Regardless of the number of watermarks (or EDUs), any tag
that is longer than 12 seconds or shorter than 4 seconds is reported to have a tag-duration
error.

Corresponding Log Message

The following log messages, with error code ​_VALIDATOR_DURATION_CHECK_ERROR_​ ​(-54), ​are
indications of tags that are too short or too long:

Tag time error, sequence number xx: Tag is short, but EDU not filled.

Tag time error, sequence number xx: ​Tag duration is less than 4 seconds.

Tag time error, sequence number xx: ​Tag duration is greater than 12 seconds.

Example

Pass <1/0/3>

Although only 1 tag was shorter than 4 seconds or longer than 12 seconds, it would
have been permissible for there to have been up to 3 such tag-length errors before
the test was labeled “fail.”

Tests 6 – 8: Invalid CID: CID SID Error, CID TS Error, CID TS Offset Error

There are three ways that a CID (Content Identifier) may be in error:

● The wrong PC or FD SID may have been selected (eCidSidCheck)

● For live-streaming content, the CID time stamp may have been set to a value other
than 3 AM, usually indicating a daylight-saving-time error (eCidTsCheck).

Nielsen Confidential
Revision 1.7 25

Nielsen ID3 Tag Validator SDK Developer Guide

● The PC or FD CID timestamp + offset may not identify the correct ID3 tag.
(eCidTsOffsetCheck)

Note that if the CID of a specific ID3 tag is invalid for more than one reason, it may be that only
one error is tallied in the StatusCheckList. Please refer to the application user’s guide for
more detailed information pertaining to these three tests.

Corresponding Log Message

There are quite a few error messages that may be logged in the case of a CID error of any
kind. All of the errors are tagged with one of the following error codes. The message string
itself indicates whether the error is due to an invalid SID, timestamp, or tag offset.

_VALIDATOR_PC_CID_ERROR_ -55

_VALIDATOR_FD_CID_ERROR_ -56

_VALIDATOR_BOTH_CID_ERROR_ -57

Example

ID3 Tag: CID SID Test: Pass <0/0/6>

ID3 Tag: CID Timestamp Test: Pass <0/0/6>

ID3 Tag: CID TS Offset Test: Pass <1/0/6>

This example shows the following:

● No PC or FD CID errors due to invalid SID (up to 6 would have been
permitted)

● No PC or FD CID errors due to timestamp (up to 6 would have been
permitted)

● One PC or FD tag-offset error due to offset error (up to 6 would have been
permitted)

Test 9: Breakout Type Check (eBreakoutTypeCheck)

The SDK reports an error if the breakout type falls outside the range “00” and “99.” It logs an
informational message if the breakout type changes, but does not declare it as an error. Note
that Nielsen no longer uses the ID3 tag breakout code.

Corresponding Log Message

This message is logged if the breakout type is out of range (“00” to “99”), along with error
code ​_VALIDATOR_BREAKOUT_TYPE_ERROR_​ (-58):

Invalid breakout code: Sequence Number xx, Tag Time xx (time string).

This message is logged whenever the breakout code changes, along with error code
_VALIDATOR_BREAKOUT_TYPE_ERROR_​ (-58):

Breakout type changed from xx to xx: : Sequence Number xx, Tag Time xx.

Nielsen Confidential
Revision 1.7 26

Nielsen ID3 Tag Validator SDK Developer Guide

Example

Pass <0/0/1>

Although there were no breakout errors, the SDK would have allowed one error
before declaring that the test was labeled “fail.”

Tests 10 and 11: Watermark Time and Level Checks

The Validator SDK keeps track of any ID3 tag EDUs (watermarks) that have time codes that
appear to jump forward or backward at a pace that is not synchronized with the running
transport-stream or tag “clock.” The SDK also keeps track of changes to the daylight saving
time (DST) flag setting. Any discrepancies between the expected watermark time (or DST
flag) and the actual setting are tallied as watermark time warnings.

Likewise, the SDK keeps track of any watermarks for which the watermark level of any given
SID has changed (for example, from PC to FD). Such a change could explain a resulting CID
error. The SDK records this error in the eWatermarkLevelCheck element of the
StatusCheckList array.

These observations regarding watermarks do not necessarily signify errors. Instead, they
provide supporting information if there are reported CID errors in a specific ID3 tag. The
watermark warnings should be considered informational only.

Corresponding Log Message

All log messages pertaining to watermark time variations and level changes are marked by
log codes ​_VALIDATOR_WATERMARK_TIME_WARNING_​(-59) and
_VALIDATOR_WATERMARK_LEVEL_WARNING_​ (-60)​. The corresponding message strings provide
detailed information that may prove useful in classifying / analyzing CID errors and warnings.

Example

Pass <4/0/22>

Although there are 4 watermark time-variations, up to 22 would be permitted. The​ 4
instances might provide useful background information pertaining to CID settings.

Test 12: INFO-Tag Check (eInfoTagCheck)

Periodic Report

For a periodic report, the INFO-tag check monitors the number of seconds since the last
INFO tag was detected in the stream. Within the first 300 seconds of content, if no INFO tags
have yet been seen, the INFO-tag check indicates the number of seconds since the start of
content.

INFO tags are expected to arrive at 5-minute intervals. If 310 seconds expire without an INFO
tag, the INFO-tag check is considered to have failed for that period.

Nielsen Confidential
Revision 1.7 27

Nielsen ID3 Tag Validator SDK Developer Guide

Example

Pass <68/0/310>

This example indicates that 68 seconds have passed since the last INFO tag. The
status is “pass” because 310 seconds have not yet transpired.

Summary Report

For a summary report, the INFO-tag check reports the number of INFO tags that occurred
during the entire length of processed content, as compared to the minimum number of INFO
tags that must be seen in order for the test to pass.

Example

Pass <19/16/0>

In this case, 19 INFO tags were detected, exceeding the minimum requirement of 16
tags.

Test 13: INFO-Tag Interval Check (eInfoTagIntervalCheck)

In that both tests report on the occurrence of INFO tags, the INFO-tag interval check is
related to the INFO-tag check. However, the ​eInfoTagIntervalCheck​ is an ​error​ report, not an
event​ report. It indicates the number of times an INFO tag appeared less than 290 seconds or
more than 310 seconds after the last INFO tag. When an INFO tag is reported as missing, the
next tag may also be reported as having “arrived too soon.” The result is that two errors are
logged, although only one error occurred.

Corresponding Log Messages

If INFO tags arrive too soon or too late, the error code ​_VALIDATOR_TIME_GAP_ERROR_​ ​(-53)
precedes a message like this:

INFO Tag ​is missing or late: sequence number xx

Example

Pass <0/0/0>

Because of a short report-interval in the example above, no errors would have been
tolerated. However, because no errors occurred, the test passed.

Tests 14 and 15: INFO Tag Errors (eITCidError and eITOffsetError)

For INFO tags, both the PC (Program Content) and FD (Final Distributor) CIDs should be set
to ​X100zdCIGellgZnkYj6UvQ==, ​representing a SID of 0 and a timestamp of 0.​ ​If either of
the CIDs is set to any other value, Validator SDK logs a CID SID error.

Likewise, the tag offsets for all INFO tags should be set to 0. If any INFO-tag offsets are not
set to 0, the SDK logs a CID offset error.

Nielsen Confidential
Revision 1.7 28

Nielsen ID3 Tag Validator SDK Developer Guide

Corresponding Log Message

Log messages accompany all detected INFO-tag CID and offset errors of the types described
above. The error codes for these log messages are ​_VALIDATOR_INFO_CID_ERROR_​ (-61) ​and
_VALIDATOR_INFO_OFFSET_ERROR_​ (-62)​.

Example

Pass <0/0/1>

This report indicates that, although there are no INFO-tag CID (or INFO-tag offset)
errors, one such error would have been acceptable for this period of time.

Tests 16 – 21: INFO Tag Field Settings

The SDK keeps a tally of errors that occur in each of six INFO-tag fields, excluding the audio
CODEC setting, which is no longer required. For each of the six fields, the SDK registers any
field with a missing or invalid setting. The length and format of each of the fields is defined in
the ​Nielsen PCM-to-ID3 SDK Developer’s Guide​.

In most cases, the SDK simply verifies that the field is filled and that it does not have any
characters considered to be “illegal” for that field.

Because all INFO tags are identical, the SDK does not log a message for each observed
error. Instead, in the periodic and summary reports, the IssueStatusReport() callback
provides the settings of all INFO fields.

These are the StatusCheckList fields that hold the INFO-tag reports:

eITVendorIdError,​ ​// Invalid or missing vendor ID in INFO tag

eITDeviceTypeError,​ ​// Invalid or missing device type in INFO tag

eITDeviceIdError,​ ​// Invalid or missing device ID in INFO tag

eITSystemVersionError,​ ​// Invalid or missing version number in INFO tag

eITSdkVersionError,​ ​// Invalid or missing SDK version number in INFO tag

eITDistributorIdError,​ ​// Invalid or missing distributor ID in INFO tag

Test 22: Tag Placement Check (eTagPlacementCheck)

If the incoming content is a transport stream that includes a watermarked AC-3 elementary
stream, the tag-placement error field keeps track of the number times that an ID3 tag appears
to be out-of-sync with the audio content that it represents. If the incoming stream is not a
transport stream or if the audio format is not AC-3, the status is set to “No Status.”

Corresponding Log Message

If the ID3 Tag Validator analyzer determines that a tag is badly placed in the transport
stream, it issues this log message, using the ​_VALIDATOR_TAG_PLACEMENT_ERROR_​ ​(-64)​:

Tag is xx seconds separated from audio watermarks at sequence number xx, tag

time xx.

Nielsen Confidential
Revision 1.7 29

Nielsen ID3 Tag Validator SDK Developer Guide

Example

Pass <0/0/1>

This report indicates that, although there are no tag-placement errors, one such error
would​ have been acceptable for this period of time.

Test 23: Tag Time Check (eTagTimeCheck)

The Validator SDK compares the rate of advance of the metadata Presentation Time Stamp
(PTS) to the rate of advance of the first or last tag time. The PTS is the MPEG-2 feature that
synchronizes the component elementary streams of the transport stream. If the tag times
advance at a rate that is substantially different from the rate at which the PTS is advancing,
then the SDK declares a tag-time error.

Corresponding Log Message

If the ID3 Tag Validator analyzer determines that a tag is not synchronized with the audio
PTS, it issues a log message using the ​_VALIDATOR_TAG_PLACEMENT_ERROR_​ ​(-64)​:

Tag time out-of-sync with PTS. Delta = xx.

Example

Pass <0/0/5>

This report indicates that, although there are no tag-time errors, 5 such error would
have been acceptable for this period of time.

Test 24: PES Packet Header Check (eId3PesPacketCheck)

The ID3 Tag Validator counts the number of PES-packet headers that are associated with the
Nielsen ID3 tag metadata stream. There should be at least one of these PES packet headers
every 10 seconds. If the PES headers are missing (even though the PMT lists the stream in
its elementary loop) it is possible that the PES stream itself was omitted from the transport
stream during multiplexing process.

This field is an “event” count, not an error count. The Validator SDK does not issue log
messages for this event.

Example

Pass <69/53/0>

This report​ shows that 69 Nielsen PES headers were found. At least 53 instances are
required, so the test passed.

Test 25: PES Owner-ID Check (ePesOwnerIdCheck)

When ID3 Tag Validator finds the string “ www.nielsen.com” near the beginning of a PES
packet, it logs the event. The purpose of this test is to ascertain that the ID3 tag metadata
elementary stream is, indeed, a ​Nielsen​ ID3 tag stream. Just one Nielsen URL event is
needed to confirm this fact.

Nielsen Confidential
Revision 1.7 30

Nielsen ID3 Tag Validator SDK Developer Guide

Because this is an “event” check and not an error check, no message is logged when a
Nielsen owner-ID is detected.

Example

Pass <69/1/0>

This report shows that 69 Nielsen owner-IDs were found. Only one owner-ID is
required to declare this a Nielsen ID3 tag. Therefore, the test passed.

Test 26: Metadata PES PTS Check (eMetadataPesPtsCheck)

In order for ID3 tag packets to be multiplexed properly into a transport stream, each PES
header must contain a PTS. Each time the PTS is missing from a Nielsen metadata header,
the Validator SDK increments the eMetadataPesPtsCheck field in the StatusCheckList array.

Corresponding Log Message

If the ID3 Tag Validator analyzer determines that the PTS field is missing from the Nielsen
ID3 tag PES header, it logs an error message using the ​_VALIDATOR_PES_PTS_ERROR_​ (-67)
code. The corresponding message is.

Missing PTS in Nielsen PES header.

Example

Pass <0/0/4>

This report shows that no PTS fields were missing from the PES header. However​,
up to four missing PTS fields would have been tolerated. As a result, this check
passes.

Test 27: PES Stream Type ​Check (eCompleteTagPayloadCheck)

Each Nielsen metadata PES packet header must have a stream ID of 0xBD, and it must
include a non-zero PES packet size, as specified in the document “Timed Metadata for HTTP
Live Streaming.” If Validator SDK parses a Nielsen ID3-tag PES packet for which one or both
of these conditions is not true, it logs a stream-type error.

Corresponding Log Message

If the PES packet stream ID is set incorrectly or if the PES packet size is set to 0, one of the
following error messages is sent with a code of -3:

PES header not valid for ID3 Tag Metadata Packet.

PES packet length is set to 0.

Example

Pass <0/0/5>

This report shows that there were no PES header errors found​.

Nielsen Confidential
Revision 1.7 31

Nielsen ID3 Tag Validator SDK Developer Guide

Test 28: Complete Tag Payload Check (eCompleteTagPayloadCheck)

If the size of the payload in the Nielsen ID3 metadata stream is not large enough to hold a
complete Nielsen ID3 tag the Validator adds to the tally of incomplete ID3 tags. An
incomplete payload cannot be decoded.

Each Nielsen ID3 tag spans two transport packets. If the size of the payload (as specified in
the PES header) is correct, but the second transport packet contributing to the payload is
missing, Validator logs an incomplete-tag error.

Corresponding Log Message

If the ID3 Tag Validator analyzer determines that the metadata PES payload is the wrong
size, it logs this error message, using the ​_VALIDATOR_PES_PACKET_ERROR_​ (-65)​ ​code:

Invalid tag returned from tag buffer. Wrong size.

Example

Pass <0/0/2>

This report shows that no PES payloads were the wrong size. However, up to two
badly sized​ PES packets are tolerated. As a result, this check passes.

Tests 29 and 30: PMT Elementary Stream and Descriptor Checks

(ePmtElemstreamCheck and ePmtDescriptorCheck)

In order for an MPEG-2 decoder to detect a Nielsen ID3 tag elementary stream, it must find
an entry in the PMT elementary-stream loop for a stream of type 0x15, followed by an
MPEG-2 ID3 tag descriptor.

● Each time that it finds a stream of type 0x15 in the loop, the Validator
increments the ePmtElemStreamCheck tally.

● Each time that it finds an ID3 tag descriptor, the Validator increments the
ePmtDescriptorCheck.

Because both of these checks are “event” checks, not error checks, no messages are logged
when the tallies are incremented.

For more information regarding the proper formation of PMT packets for ID3 Tag Metadata,
refer to “HTTP Live Streaming Metadata”.

Example

Pass <7102/5/0>

This report shows that the proper descriptor was included in thousands of PMTs,
when only 5 instances are required. Obviously, the test passed.

Nielsen Confidential
Revision 1.7 32

Nielsen ID3 Tag Validator SDK Developer Guide

The Sample Application

The sample application provided with the SDK reads data from file and delivers it in buffers to
the SDK libraries for processing and analysis. You can find the source code for this sample
application in the NielsenApp folder of the SDK package. Although not production-ready, the
source code does include helpful in-line comments. You may include the code, in whole or in
part, in your own application. However, you may need to add error checking or customized
settings to meet the needs of your application. Feel free to modify it to meet your needs,
except for the header files in the inc folder​​, which are tightly linked to the SDK libraries and
may not be edited.

In Figure 2, the blue rectangles represent classes and files whose source code is provided as
part of the Nielsen ID3 Tag Validator SDK.

Figure 2 – ID3 Tag Validator Sample Application

Nielsen Confidential
Revision 1.7 33

Nielsen ID3 Tag Validator SDK Developer Guide

NielsenId3TagValidator.cpp

NielsenId3TagValidator.cpp ​​defines the main() function, which performs these basic tasks:

● Uses class CNielsenValidatorParameters to read and store command-line arguments

● Creates three objects and configures them based on the command-line parameter
settings:

o The ​file reader​ object (example source code provided)

o The ​logger / report-generator​ object (example source code provided)

o The ​main processor​ (an object of type CId3TagValidator).

● Invokes the file-reader Run() function, to process the entire input file.

● Calls the file-reader Report() function, to generate a summary report of the ID3 tag
analysis.

● Releases all allocated resources, closes files, and exits.

NielsenValidatorParameters (.cpp and .h)

These files define the CNielsenValidatorParameters class, which reads command-line
arguments, stores their settings, and makes those settings available to other modules for use
in the configuration process. Its primary function is GetArgs(). All other public functions are
get/set functions, used to access the private members of the class.

The options that are read from the command-line include:

● The type of input data to be processed/analyzed:

o –r​​ indicates that the input data to be processed is a stream of ID3 tags that are
generated by any of these applications:

● PCM-to-ID3​​ The output of PCM-to-ID3 SDK sample application is a stream
of encrypted Nielsen ID3 tags. These are complete tags: they include the ID3
tag header and the ID3 frame header, as well as the “www.nielsen.com”
owner-id and the tag payload. The ID3 tags are arranged contiguously and in
proper sequence in the stream.

● Tablet Sample Application (or CHLS log)​​. The log produced by the tablet
or browser sample application includes blocks of text, interspersed with
encrypted ID3 tags. The Validator SDK buffers the incoming data, then
parses the buffered data to find each “www.nielsen.com” string. It passes the
encrypted tag (starting with “www,” but without the tag-header and
frame-header) to various classes in the SDK libraries for further processing.

● Other Sources ​​– Actually, the SDK can process any file (text or binary) that
includes encrypted tags that are not interrupted or truncated after the start of
the “www” string.

Nielsen Confidential
Revision 1.7 34

Nielsen ID3 Tag Validator SDK Developer Guide

o -t​​ indicates that the input data to be processed is a properly formed MPEG-2
transport stream that includes a Nielsen ID3-tag metadata elementary stream.

o -m​​ indicates that the input file is an m3u8 playlist. You may use this option if the
m3u8 file provides an index to HLS (transport stream) segments that are stored on a
local drive. It does not work when the m3u8 file uses a URL to reference the
segments. This option is provided only to show that Validator SDK can process HLS
segments, just as it processes an unsegmented transport stream.

● The input-type option (-r, -t, or -m) must be followed immediately by the full path
name of the file to be processed.

● -​o,​​ followed by the full path name of the folder to hold the output report and the log
file.

● -p​​, followed by an integer in the range 0 through 7, as defined on page 8 of this
manual.

● -s​​, followed by the length of the periodic-report interval (in seconds, >= 10). This
option is ignored if the –p option is set to 0. The recommended interval is 30
seconds.

● -p​​, followed by the program number of the program (in a multi-program transport
stream) to process. If ​–n​​ is not included on the command-line and, if the input is a
multi-program transport stream, the application processes the first program listed in
the program association table (PAT) of the transport stream.

The CNielsenValidatorParameters class uses the name of the input file as well as the path name
of the output folder to generate the names of the output (log and report) files.

NielsenValidatorFileReader (.cpp and .h)

The ​NielsenValidatorFileReader ​​files define the CNielsenValidatorFileReader class, whose
main functions are:

● The ​Constructor​​, which accepts four arguments and opens the input file for reading.
The arguments:

o The name of the input file

o A pointer to the logger object

o A pointer to the main-processor object

o An indicator of the file type (ID3-tag stream or transport-stream). Note that if you are
processing HLS segments (-m), the file type is eTransportStreamDataType, just as if
you were processing an unsegmented transport stream.

● Run​​() – Repeatedly reads buffers of data from file, passing each buffer to the
main-processor object for processing and analysis.

● Report​​() – Calls the main-processor function, GenerateSummaryReport(). The
logger object will “catch” the report data and store it in a file.

Nielsen Confidential
Revision 1.7 35

Nielsen ID3 Tag Validator SDK Developer Guide

● Destructor​​ – Closes the input file.

NielsenValidatorLogger (.cpp and .h)

The logger files define the CNielsenValidatorLogger class, a “callback class” derived from
Id3TagValidatorLoggerBase. (An earlier section of this document provides details regarding
callback classes). CNielsenValidatorLogger exposes these public methods:

● Constructor​​ – Opens the output files. Requires these arguments:

o nReportsToGenerate determines which of the 3 optional reports (periodic report,
detailed tag listing, and comma-delimited tag listing) will be generated:

o 0 – no optional reports

o 1 – periodic report only

o 2 – detailed tag listing only

o 3 – periodic report, detailed tag listing

o 4 – comma-delimited tag listing

o 5 – periodic report, comma-delimited tag listing

o 6 – detailed tag listing, comma-delimited tag listing

o 7 – all three optional reports

o Log file name (full path name of the log file to generate)

o Tag file name (full path name of the file that will hold ID3 tags and/or NAES
watermarks, if nReportsToGenerate is set to 2, 3, 6, or 7. Otherwise, set to NULL.

o Report file name (full path name of the report file to generate). If
nReportsToGenerate is set to 1, 3, 5, or 7, this report file will hold a series of periodic
reports, followed by a single summary report.

o Input file name (full path name of the input file to read, used only for reporting
purposes)

o Comma-delimited file name (full path name of the file that will hold a
comma-delimited listing of each ID3 tag found in the content). If
nReportsToGenerate is set to 4, 5, 6, or 7, this report file will hold the
comma-delimited tag listing.

● Destructor​​ – closes files, releases resources.

● int​ ​LogMessage​(​int​ ​code​, ​const char​ ​*message​);

This function is invoked by the SDK libraries whenever they have a status or error message
to report. The sample application handles the log-message callback by storing in a log
file each message and its corresponding code. However, your application may handle log
messages differently. Simply modify ​body​​ of the LogMessage function to handle the
message and code as you see fit. Make certain, though, not to modify the function

Nielsen Confidential
Revision 1.7 36

Nielsen ID3 Tag Validator SDK Developer Guide

declaration itself. It ​must​​ match the name of the pure-virtual function defined in
Id3TagValidatorLoggerBase.

Note If the <code> argument is set to 11111 (cTagReportCode), the <message> is a listing of a single

decrypted ID3 tag. The Nielsen Validator sample application stores tag listings in a separate file,

named by the third constructor argument. If the <code> argument is set to 12121, the <message>

is a comma-delimited report of the major fields of a single ID3 tag. The Nielsen Validator sample

application stores the comma-delimited tag listing in a separate file, named by the last constructor

argument. If the <code> argument is set to 22222 (cWatermarkReportCode), the message is a

listing of a single audio code (also referred to as a watermark). The sample application stores

watermark listings in the same file as detailed tag listings. The watermark listing begins with ****.

By comparing the watermark time stamp to the time stamps of the EDUs in the next tag, you can

determine whether or not the ID3 tags are properly synchronized with the audio watermarks.

● int​ ​IssueStatusReport(ValidatorOutputFields_t​ *​pValidatorStatus​);

The SDK libraries invoke this function whenever they have a report (periodic or summary)
to deliver. The sample application sends these reports to a file; however, you may
choose to handle the reports differently. Simply modify or replace the body of the
IssueStatusReport() function to meet the needs of your application.

Note that the IssueStatusReport() function displays the pass/fail results by performing
these steps:

1. In a for-loop, traverses the test array. For each test in the array:

a. Assigns a label to the test

b. Assigns a string to represent the test result (pass, fail, warning, or no status).

c. Creates a string holding the count, min-occurrence, max-error settings for this
test. Puts those three values between <> brackets. (For periodic reports, the
sample application prints only the pass/fail status, but not the actual counts. In
your output, you may elect to report as much or as little detail as you like).

d. Writes the test line to file.

Also note that a PrintInfoTag() is provided to display the INFO tag in readable format.

Running the Sample Application

Please refer to the ID3 Tag Validator Application User’s Guide for detailed instructions on
running the Validator sample application and on interpreting the output files.

Nielsen Confidential
Revision 1.7 37

