

Nielsen Confidential

PCM-TO-ID3 SDK
Developer Guide
Release 2.4 Revision N

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 1 Nielsen Confidential

Copyright © 2017 The Nielsen Company (US), LLC. All rights reserved.

Nielsen and the Nielsen Logo are trademarks or registered trademarks of CZT/ACN Trademarks, L.L.C.

Apple®, Macintosh®, and Mac OS® are either registered trademarks or trademarks of Apple Computer, Inc. in the
United States and/or other countries.

Ubuntu® is a registered trademark of Canonical Ltd.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft® and Windows® are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

Other company names, products and services may be trademarks or registered trademarks of their respective
companies.

This documentation contains the intellectual property and proprietary information of The Nielsen Company (US) LLC.
Publication, disclosure, copying, or distribution of this document or any of its contents is prohibited.

Revision History

Revision Date Description Author(s)/Editor(s)

A 212-03-06 Initial draft Fabio Milan
Lore Eargle (editor)

B 2012-12-03 Added FAQs, VS 2005 and VS 2008 support, GCC
4.1.2 compilation; addressed 24-bit audio file
processing and added new APIs referring to the INFO
tag and ID3 tag pass-through processing;
incorporated Id3TagParser support

Fabio Milan
Lore Eargle (editor)
Scott Cooper

C 2013-05-10 Updated for release 1.2 Fabio Milan
Lois Price
Lore Eargle (editor)

D 2013-11-05 Updated for release version 2.0.0 linked to the latest
Id3TagUtils version 3.0.2. Added TI 6424 DSP

Appendix

Fabio Milan
Lois Price
Sudheer Thota
Amy Gaither (editor)

E 2014-01-07 Updated for release 2.1 Lois Price
Amy Gaither (editor)

F 2014-04-21 Modified pre-parser section to indicate that vendor
app may parse as little as 2 minutes of content

Lois Price

G 2014-05-19 Added PCCID and FDCID fields to metadata file,
added support for VS 2012

Lois Price

H 2014-06-29 Included in new package. Package changes: added
support for VS 2013, made certain that all Microsoft®
Windows® project settings are consistent, updated
build to 2.1.9

Lois Price

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 2 Nielsen Confidential

Revision Date Description Author(s)/Editor(s)

I 2014-09-05 Updated the Breakout Code Table, removed all
references to ID3 Tag Parser, edited and updated
entire document

Shefali Bhat
Amy Gaither (editor)
Lois Price

J 2015-01-26 Removed references to ID3 Tag Parser, replaced
with references to ID3 Tag Validator, improved the
explanation of Streaming Modes (0, 1, and 2), added
a reference to ID3 Tag Validator.

Lois Price
Amy Gaither (editor)

K 2016-04-21 Removed references to Streaming Modes 1 and 2
(no longer supported) and to all related functions,
removed conflicting descriptions of supported audio
frequencies, reorganized document.

Lois Price
Lore Eargle (editor)
Amy Gaither (editor)

L 2017-02-08 Removed references to Breakout Codes other than 0
and added mention of MPEG DASH (Dynamic
Adaptive Streaming over HTTP)

Lois Price
Lore Eargle (editor)

M 2017-03-31 Added MPEG-DASH packaging information Lois Price
Lore Eargle (editor)

N 2017-07-07 Updated for release 2.4 Lois Price
Lore Eargle (editor)

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 1 Nielsen Confidential

Contents
1. Introduction ... 4

1.1. Purpose ... 4
1.2. Out of Scope ... 4
1.3. Audience ... 4
1.4. References and Related Documents .. 5

2. Concept .. 6
2.1. System Overview .. 6
2.2. Transcoder Application Overview .. 6
2.3. Tasks Performed by Your Transcoder .. 7
2.4. Tasks Performed by the Nielsen PCM-to-ID3 SDK ... 8
2.5. Quick Start ... 8
2.6. Deprecated Streaming Modes and Functions ... 10
2.7. Removing Pre-existing Nielsen ID3 Tags .. 10

3. Nielsen ID3 Tags ... 11
3.1. Tag Types ... 11

3.1.1. INFO Tag ... 11
3.1.2. DATA Tag .. 11

3.2. Tag Size .. 12
3.3. Tag Timing .. 12
3.4. Tag Synchronization .. 12

4. Audio Input .. 13
4.1. Overview ... 13
4.2. 16-, 24- and 32-bit Sample Size Audio Processing ... 13
4.3. Audio from Stereo Source ... 14
4.4. Audio from Multi-Channel Source ... 14

5. SDK Package ... 16
5.1. SDK Package Description ... 16
5.2. SDK Static Libraries .. 17
5.3. Using the SDK ... 18
5.4. IPcmToId3Callback.h Interface ... 19
5.5. CPcmToId3Properties Object .. 20
5.6. CPcmToId3Api Object ... 23
5.7. SdkTypes.h ... 25

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 2 Nielsen Confidential

6. SDK Sample Application .. 26
6.1. Parameters Usage .. 26
6.2. PcmToId3 Components ... 27

6.2.1. PcmToId3App File ... 27
6.2.2. CPcmToId3Callback (.cpp and .h) Object ... 27
6.2.3. CPcmToId3Processor (.cpp and .h) Object ... 28

7. SDK Test Files ... 28

Appendix A—Frequently Asked Questions .. 29

Appendix B—Factors that Can Affect Decoding ... 33

Appendix C—PCM-to-ID3 SDK UI Settings ... 1
ID3 INFO Tag Fields ... 1

Appendix D—Insert ID3 Tags into an MPEG-DASH Stream .. 3
Media Presentation Description (MPD) ... 3
Event Message (emsg) Box .. 3

Appendix E—DSP Library Implementation .. 5
Library Memory ... 5
Library Development ... 5
Library Testing .. 6

Library Performance Benchmark ... 6
Library Function Calls .. 7
Evaluation Board Initialization ... 8

Glossary .. 9

List of Figures
Figure 1 – System Overview ... 6
Figure 2 – PCM-to-ID3 SDK Embedded in a Transcoder ... 7
Figure 3 – ID3 Data in an MPEG-2 Transport Stream .. 7
Figure 4 – Processing Flow within the Nielsen SDK ... 8
Figure 5 – 16-Bit Audio Packed in 2 Bytes ... 13
Figure 6 – 24-Bit Audio Packed in 3 Bytes ... 13
Figure 7 – 24-Bit Audio Packed in 4 Bytes with MSB Padding ... 14
Figure 8 – 24-Bit Audio Packed in 4 Bytes with LSB Padding .. 14
Figure 9 – Processing Audio Derived from Stereo Source ... 14
Figure 10 – Preprocessing Required for Multi-Channel Audio ... 15
Figure 11 – PCM-to-ID3 SDK Layout .. 18
Figure 12 – IPcmToId3Callback Method Calls.. 19

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 3 Nielsen Confidential

Figure 13 – CPcmToId3Properties Method Calls ... 20
Figure 14 – CPcmToId3Api ... 24
Figure 15 – Timing Diagram for Audio Buffer Processing .. 6

List of Tables
Table 1 – Contents of SDK Package .. 16
Table 2 – Acceptable Audio Compression rates ... 33
Table 3 – ID3 INFO Tag Field ... 1
Table 4 – pcmId3LibInit ... 7

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 4 Nielsen Confidential

1. Introduction
Important For systems that have used the PCM-to-ID3 SDK releases 2.3 and older, see section 5.7,

“SdkTypes.h.”

1.1. Purpose
This document describes the concepts and usage of the SDK. It includes requirements and
design methods for building applications using the SDK to detect and extract one or more
types of Nielsen watermark from uncompressed audio content (pulse code modulation [PCM]
audio content), to encrypt watermarks, and to wrap watermarks in ID3 tags for transmission to
mobile devices and computer browsers. ID3 tags are Apple’s solution for delivering metadata
in streaming content.

Most of the guide pertains to the C++ version of the SDK, intended for use on PC operating
systems. “Appendix E—DSP Library Implementation” covers C implementation of the SDK for
use with the Texas Instruments™ TMS320C6424 Fixed-Point Digital Signal Processor.

1.2. Out of Scope
This document does not describe the technical details of Nielsen ID3 tags. See the Nielsen ID3
Tag Validator Application User’s Guide for specifics on these tags. If you do not have a copy of
that guide, contact your Nielsen technical representative.

Note that Nielsen provides the Nielsen ID3 Tag Validator application, which is a command-line
diagnostic tool that is helpful in viewing decrypted ID3 tags and in debugging your application.

1.3. Audience
This guide is intended for experienced C/C++ software developers to use in creating
applications based on the Nielsen PCM-to-ID3 Tag SDK (the SDK).

Throughout this document, the term “you” refers to the C++ software developer who is
incorporating the Nielsen PCM-to-ID3 SDK into a transcoder application. One function of the
transcoder application is to generate Nielsen ID3 tags. This document uses the terms
“transcoder” and “ID3-tag generator” interchangeably.

This document focuses primarily on the insertion of Nielsen ID3 tags into HTTP Live-Streaming
(HLS) containers. However, PCM-to-ID3 SDK may also be used in a system that generates
other types of output (for example, MPEG DASH, which is described in Appendix D—Insert
ID3 Tags into an MPEG-DASH Stream).

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 5 Nielsen Confidential

1.4. References and Related Documents
ANSI/SCTE 104 2012. Automation System to Compression System Communications
Applications Program Interface (API). Society of Cable Telecommunications Engineers.

Apple Inc. Timed Metadata for HTTP Live Streaming.
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/HTTP_Live_Str
eaming_Metadata_Spec/Introduction/Introduction.html.

ISO/IEC 13818-1:2007 Information Technology – Generic coding of moving pictures and
associated audio information: Systems.

ISO/IEC 23009-1:2014 (E) – Informative Technology – Dynamic adaptive streaming over
HTTP (DASH) – Part 1: Media presentation description and segment formats.

Nielsen ID3 Tag Validator SDK User Guide.

Nilsson, M. ID3 Tag Version 2.4.0 – Main Structure. http://www.id3.org/id3v2.4.0-structure.

Nilsson, M. ID3 Tag Version 2.4.0 – Native Frames. http://www.id3.org/id3v2.4.0-frames.

https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/HTTP_Live_Streaming_Metadata_Spec/Introduction/Introduction.html
http://www.id3.org/id3v2.4.0-structure
http://www.id3.org/id3v2.4.0-structure
http://www.id3.org/id3v2.4.0-frames
http://www.id3.org/id3v2.4.0-frames

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 6 Nielsen Confidential

2. Concept
2.1. System Overview

As shown in Figure 1, your transcoder may be placed one or more points in the distribution
chain (including content originator, broadcast affiliate, MVPD/CDN). Regardless of where your
ID3-tag generator is placed, it must be downstream of at least one Nielsen audio encoder (a
device that inserts Nielsen codes or watermarks into the audio stream). Nielsen ID3 tags are
derived from the decoded Nielsen watermarks.

Figure 1 – System Overview

2.2. Transcoder Application Overview
The PCM-to-ID3 SDK libraries that you incorporate into your software include two major
components:

• Nielsen audio decoder: extracts Nielsen watermarks (NAES 2 and NAES 6) from the
PCM audio stream.

• ID3-tag generator: creates Nielsen ID3 tags based on the decoded watermarks.
Nielsen ID3 tags are similar to Nielsen watermarks, but are in a form that is more
easily consumed by mobile devices supporting the Apple HLS (HTTP Live Streaming)
specification, MPEG-DASH, and other industry standards.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 7 Nielsen Confidential

Your application may include an MPEG-2 multiplexer as well as an HLS segmenter, MPEG-
DASH packager, or other packaging software. Alternatively, ID3-tag packaging may be
handled by downstream devices. Figure 2 shows the workflow for the generation of HLS
streams. Note that the “Packager” might, instead, be an MPEG-DASH packager.

Figure 2 – PCM-to-ID3 SDK Embedded in a Transcoder

2.3. Tasks Performed by Your Transcoder
To serve as a Nielsen ID3-tag generator, your application must perform these basic tasks:

• Extract Nielsen-watermarked audio from a “container” stream such as MPEG-2 or
MPEG-4

• Convert the extracted stream to single-channel PCM audio. See section 4 “Audio
Input.”

• Deliver the single-channel audio to the Nielsen PCM-to-ID3 SDK software, which
returns Nielsen ID3 tags

• Remove from the original “container” stream any pre-existing Nielsen ID3 tags

• Insert into the output package (MPEG-2 transport stream, MPEG-DASH stream, or
HLS stream) the newly generated ID3 tags. Your application may also edit or
transcode the audio and video elementary streams.

Figure 3 – ID3 Data in an MPEG-2 Transport Stream

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 8 Nielsen Confidential

2.4. Tasks Performed by the Nielsen PCM-to-ID3 SDK
The PCM-to-ID3 SDK accepts a single channel of PCM audio sampled at one of the supported
frequencies defined in section 4 “Audio Input”. As shown in Figure 4, the SDK down-samples
the input audio to a 24-KHz sample rate, extracts audio watermarks, and creates ID3 tags. It
delivers the ID3 tags to your application.

Figure 4 – Processing Flow within the Nielsen SDK

2.5. Quick Start
Now, let’s put all the pieces together to define ID3-tag generation within your application, start
to finish. For the purpose of this discussion, let’s assume that you are processing an MPEG-2
transport stream.

1. Your application or system identifies the primary audio elementary stream as the
only audio stream that you deliver to the PCM-to-ID3 SDK. We define the primary
stream as the first audio Packetized Elementary Stream (PES) listed in the
Program Map Table (PMT) of the transport stream.

2. Your application creates a single monaural PCM audio stream from the primary
audio PES. For detailed instructions about the generation of a monaural PCM
audio stream, see section 4.3 “Audio from Stereo Source” and section 4.4 “Audio
from Multi-Channel Source.”

3. Your application calls the API method InputAudioData to deliver the single-channel
audio (in chunks no greater than 1 second of playback time) to the Nielsen PCM-
to-ID3 SDK.

4. The SDK generates Nielsen ID3 tags based on codes embedded in the incoming
audio stream. It delivers each ID3 tag to your application using a callback. If your
application is generating an MPEG-DASH stream, proceed to step 7. If it is
generating an HLS stream, continue to step 5.

• The SDK delivers DATA tags at a frequency of one ID3 tag every 5 to 10
seconds.

• The SDK delivers one INFO tag every five minutes.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 9 Nielsen Confidential

5. If your application is generating an MPEG-2 transport stream, it embeds the newly
generated ID3 tag into a properly formed PES packet, multiplexed into the
outbound MPEG-2 transport stream. The multiplexing process must follow the
guidelines for inserting ID3 tags into a transport stream specified by Section 2 of
Timed Metadata for HTTP Live Streaming. See section 1.4, “References and
Related Documents.”

Specifically, your application must:

• Insert a 17-byte metadata pointer descriptor into the program-info loop of the
PMT. See Table 1 “Metadata Pointer Descriptor” in section 2.6.59 of ISO/IEC
13818-1:2007.

• Add the following entry to the elementary-stream loop of the PMT:

o Stream type = 0x15 (decimal 21)

o Elementary PID = PID of the ID3 tag stream

o ES Info Length = 15

o Metadata descriptor: 15-byte descriptor, as described in “Timed Metadata
for HTTP Live Streaming”

6. If you are generating an HLS stream, after completing step 5, your application (or
a downstream application) generates a multi-profile HLS package based on the
transport stream created in step 5.

7. If your application is generating an MPEG-DASH stream, it inserts the ID3 tag into
the Event message (emsg) box associated with the audio segment to which the
ID3 tag applies. See “Appendix D—Insert ID3 Tags into an MPEG-DASH Stream”
for detailed instructions.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 10 Nielsen Confidential

2.6. Deprecated Streaming Modes and Functions
For a brief period between PCM-to-ID3 SDK version 2.1 and 2.3, there were three supported
streaming modes. Streaming mode 0 (PCMID3_STREAMING_MODE_LIVE_STREAMING_CONTENT) is
now the ONLY supported stream mode.

Your application must NOT call the following, deprecated CPcmToId3Api methods, most of
which are related to the unsupported streaming modes. In version 2.4 of PCM-to-ID3 SDK,
these functions have all been removed from the SDK interface:

• InitializePreParser()

• PreParseBuffer()

• Report()

• GetMetadataInformation()

• InputId3PassThroughData()

2.7. Removing Pre-existing Nielsen ID3 Tags
If the incoming transport stream contains Nielsen ID3 tags, those tags must NOT be included
in the output of your application.

In a transport stream or HLS stream, Nielsen ID3 tag elementary stream(s) may be identified
as follows:

1. In its elementary stream loop, the PMT of a program with ID3 tags includes an
entry identifying an ID3 tag metadata stream. The stream type of that entry is
0x15, and an ID3 tag metadata descriptor follows the entry. Save that PID for use
in step 2.

2. From the PES identified by the PID(s) stored in step 1, extract and parse the
introductory bytes of the payload of a complete PES packet. The payload of a
Nielsen ID3 tag PES begins with a 10-byte ID3 tag header, followed by a 10-byte
ID3 frame header. Immediately after the frame header, the Owner ID field begins
with the string www.nielsen.com. This string positively identifies the PES as a
Nielsen ID3 tag PES.

In an MPEG-DASH package, Nielsen ID3 Tags are contained in emsg boxes identified by the
scheme ID URI www.nielsen.com:id3:v1" value="1".

If your application identifies any pre-existing Nielsen ID3 tags in the content, those tags must
not be included in the stream that your application generates.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 11 Nielsen Confidential

3. Nielsen ID3 Tags
3.1. Tag Types

There are two different types of ID3 tags: INFO Tags and DATA Tags. For a detailed
description of these two types, see the Nielsen ID3 Tag Validator Application User Guide.

3.1.1. INFO Tag
The INFO tag holds information about the device that generated the ID3 tags, including
definitions of the device type, device identifier, and software version. It also provides
information about the SDK and content distributor. This information may be used to identify
and troubleshoot problems in the field.

Important Your application must provide a way for users to configure the Distributor ID.

For instructions on setting the INFO-tag fields, see section 5.5 “CPcmToId3Properties Object.”

3.1.2. DATA Tag
The DATA tag holds information derived from Nielsen watermarks detected in the audio
stream. The watermark information is stored in EDUs (Elemental Data Units). A single ID3 tag
may hold between 1 and 10 filled EDUs, each representing a single watermark. The SDK does
not generate an empty tag.

The EDUs are based on two primary types of watermarks: Program Content (PC) and Final
Distributor (FD). The PC watermarks are used, as the name implies, to track program content.
The FD watermarks are used to track the distributor of the content.

In addition to the EDUs, each DATA tag includes these fields:

• Sequence number: a 16-bit value that is incremented after each ID3 tag is finalized and
sent to your application. The value rolls over to 0 after 65,535. If you check the tag
sequence numbers, you can determine whether any ID3 tags have been dropped or
duplicated during the process of multiplexing or packaging.

• PC and FD CIDs (Content IDs): each of the two CIDs is a 24-byte encrypted string that
(prior to encryption) has two components, both based on the EDUs within the ID3 tag:

○ CID SID: the SID (PC or FD) that best represents the EDUs in the ID3 tag

○ CID Timestamp: a 32-bit value representing the start of the most recent broadcast
day, where the broadcast day is defined as starting at 3 a.m.

• PC and FD Offsets: each offset represents the number of seconds (within roughly 10
seconds) that watermarks in the tag are offset from 3 a.m.

• Tag times (first and last): The first tag-time represents the time when data collection

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 12 Nielsen Confidential

began for the current tag. The last tag-time represents the time when the tag was
generated and sent to your application. The tag times are based on a virtual clock that
your application exposes to the PCM-to-ID3 SDK. To set the tag times, the SDK uses
the third argument that your application provides to the function InputAudioData().

• Breakout Code: The breakout code is no longer used; the SDK sets it unconditionally to
0. The Breakout Code Get/Set functions are still defined in the property header file (for
backward compatibility), but the functions do nothing.

3.2. Tag Size
Each INFO tag and each DATA tag is 271 bytes. Because the tag exceeds the 188-byte size of
a transport packet, it must span two transport packets.

3.3. Tag Timing
A single INFO tag is generated once every five minutes. Either of two events triggers the
generation of a DATA tag:

• Ten seconds have elapsed since the last DATA tag was created and sent to your
application.

• The EDU array (with 10 slots) was filled before ten seconds elapsed.

Note that the timing of both the INFO and the DATA tags is driven entirely by the
currentTime argument that you feed to the InputAudioData() function.

3.4. Tag Synchronization
It is extremely important that each ID3 DATA tag be synchronized within 10 – 15 seconds with
the audio that it represents. To achieve this synchronization, make certain to set the PTS of the
ID3 Tag PES packet to the PTS of the last audio PES that your application processed. If your
application generates an MPEG-DASH stream, the emsg that holds the ID3 tag must be
included in the same segment as the audio block that was most recently processed.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 13 Nielsen Confidential

4. Audio Input
4.1. Overview

If the incoming transport stream contains more than one audio stream for a single program,
you must present ONLY the PRIMARY audio stream to the SDK.

Important The incoming audio must be “clean,” that is, the audio must be relatively free of noise and
have no aliasing or distortion. There must be no clipping between 750 Hz and 6.3 KHz.
You must make certain that any resampling of the audio does not significantly degrade the
audio quality.

The SDK supports uncompressed (PCM) audio streams of 24-bit or 16-bit resolution with the
following sample rates:

• 24 kHz: this is the preferred sample rate, as samples at 24 kHz do not require
additional processing for sample rate conversion.

• 48 kHz, 44.1 kHz, 32 kHz, 22.05 kHz, 16 kHz: If you provide audio at any of these
frequencies, the PCM-to-ID3 SDK re-samples the audio to 24 kHz.

4.2. 16-, 24- and 32-bit Sample Size Audio Processing
The SDK processes only PCM audio of 16- and 24-bit sample sizes; however, the 24-bit audio
may be packed in a 32-bit container, which requires a padding byte to be placed before or after
the 24 bits of actual data. Below are the four possible layouts. All layouts assume the sample is
in little endian byte order. For more information regarding these layouts, see the
SetSampleSizeAndPackingMode() method in section 5.5 “CPcmToId3Properties Object.”

1. Figure 5 shows the layout for 16-bit audio packed in 2 bytes. No padding is
required because the SDK does not require padding instructions.

Low-Order
Byte

High-Order
Byte

Figure 5 – 16-Bit Audio Packed in 2 Bytes

2. Figure 6 shows the layout for 24-bit audio packed in 3 bytes. No padding is
required because the SDK does not require padding instructions.

Low-Order
Byte Middle Byte High-Order

Byte

Figure 6 – 24-Bit Audio Packed in 3 Bytes

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 14 Nielsen Confidential

3. Figure 7 shows the layout for 24-bit audio packed in 4 bytes with MSB padding.
The padding byte is the most significant byte of the 32-bit sample. Order is
assumed little-endian byte.

Low-Order
Byte Middle Byte High-Order

Byte
Padding

Byte

Figure 7 – 24-Bit Audio Packed in 4 Bytes with MSB Padding

4. Figure 8 shows the layout for 24-bit audio packed in 4 bytes with LSB padding.
The padding byte is the least significant byte of the 32-bit sample. Order is
assumed little-endian byte.

Padding
Byte

Low-Order
Byte Middle Byte High-Order

Byte

Figure 8 – 24-Bit Audio Packed in 4 Bytes with LSB Padding

4.3. Audio from Stereo Source
As the SDK accepts only one monaural audio channel, if the incoming audio is stereo, your
application must pass only the left audio channel to the SDK. Do not down-mix left and right
channel audio into a single monaural mix for the audio input to the SDK.

Figure 9 – Processing Audio Derived from Stereo Source

4.4. Audio from Multi-Channel Source
For multi-channel audio (5.1), the center channel audio is to be attenuated -3 dB and added to
audio from the left channel. Your host application is responsible for combining these channels.
As shown in Figure 10, you must scale the audio prior to mixing to prevent overflow of PCM
sample values. Nielsen recommends scaling individual audio channels down by -3 dB prior to
the mixing process.

Optionally, you may use a Dolby® ProLogic® II down mix (Lt or Lo) instead of applying the
above technique. Once you have combined the audio channels, you may process the audio as
recommended in section 4.3, “Audio from Stereo Source.”

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 15 Nielsen Confidential

Figure 10 – Preprocessing Required for Multi-Channel Audio

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 16 Nielsen Confidential

5. SDK Package
5.1. SDK Package Description

In the root folder, the SDK package contains the PCM-to-ID3 SDK libraries, header files, and
sample application (including source code). It also holds compiled, executable versions of the
sample application for each supported platform. You may select from a set of zipped files, each
holding components required for a specific platform, as described in Table 1. Version 2.4 of
PCM-to-ID3 SDK supports only 64-bit platforms.

Table 1 – Contents of SDK Package

Platform Folder Contents

All README Legal information

All \docs PCM-to-ID3_SDK_Manual.pdf— this document

Release notes (optional)

All \apps An executable compiled from the sample application source
code, customized for the platform (Linux, Windows, Mac)
that you have selected.

All \lib

The lib directory holds the libraries to which your application
must link. For Mac and Linux, the set of libraries are:

libCryptopp.a

libId3TagUtils.a

libNaes2HybridDecoder.a

libNaes6Decoder.a

libNielsenAudioCore.a

libPcmToId3Sdk.a

If you are building on a Windows computer using Visual
Studio, all of the component libraries are combined in
libPcmToId3Sdk.lib.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 17 Nielsen Confidential

Platform Folder Contents

All \inc C/C++ header files required to interface with the SDK

PcmToId3Api.h - Defines the primary interface to the PCM-
to-ID3 SDK libraries.

IPcmToId3Callback.h - Defines the abstract base class from
which you must derive your callback class.

PcmToId3Properties.h—Defines a class that manages the
configurable properties that must be passed to the API.

SdkTypes.h—types used by the APIs

IPcmToId3Api.h – A base class required by PcmToId3Api.h.
Your application will not interface directly with this file.

Linux \sample Makefile or Visual Studio project/solution files required to
build the sample application.

All \sample\App PcmToId3App.cpp—main entry point of the sample
application

PcmToId3Callback (.cpp and .h) — callback class that
receives ID3 tags and log messages from the API.

PcmToId3Processor (.cpp and .h)—parses, validates, and
processes parameters from the user. Configures and runs
the PCM-to-ID3 engine.

All \Common Holds source code responsible for reading input files and for
writing output files.

5.2. SDK Static Libraries
You may build your application on any of the following platforms:

• Microsoft Windows 7 (64-bit) or later operating system

You may compile the sample application with Visual Studio 2013 or 2015 (both in the
same package). For each supported version of Visual Studio, there are two separate
sets of libraries: one built with statically linked C-runtime, and the other built with
dynamically linked C-runtime.

• Linux 64-bits (Nielsen built the package on a Ubuntu 16.04 system)

Nielsen compiled the sample application with gcc/g++ (version 5.4.0). The Linux
libraries are compiled with the -fPIC option, allowing you to link to executable files,
static libraries, or shared libraries.

• Mac® (Tested using MacOS X Sierra). Use gcc/g++ Version 5.4.0 or later.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 18 Nielsen Confidential

5.3. Using the SDK
Below are the objects that the sample application uses to demonstrate the functionality of the
SDK. Note that the source code is provided solely as an example. You should customize the
software to meet the needs of your application. You are responsible for adding the error-
handling capabilities.

• IPcmToId3Callback: ID3-tag and log callback interface from which you must derive
your own class

• CPcmToId3Callback: class you derive from IPcmToId3Callback to handle three items
that the SDK delivers to you:

○ Log messages: you must store these in whatever logging scheme you support.

○ ID3 tags: you must insert these into the output transport/HLS stream or MPEG-
DASH stream.

○ NAES 2 and NAES 6 JSON strings: You may capture these for debug purposes
only. This option should be turned OFF for production-ready applications.

• CPcmToId3Api: primary API through which your application communicates with the
Nielsen SDK libraries

• CPcmToId3Properties: class your application uses to set all properties that the SDK
requires

Figure 11 – PCM-to-ID3 SDK Layout

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 19 Nielsen Confidential

5.4. IPcmToId3Callback.h Interface

Figure 12 – IPcmToId3Callback Method Calls

IPcmToId3Callback.h defines the abstract base for a callback class that your application must
create. CPcmToId3Api uses this callback class to deliver ID3 tags (ResultCallback) and log
messages (LogCallback) to your application. Note that a third callback (WatermarkCallback) is
provided for test/debug purposes, to report NAES 2 and NAES 6 codes that the Nielsen
decoder extracts from the audio stream. You must construct CPcmToId3Api with a pointer to
your callback class.

In the Nielsen sample application, CPcmToId3Callback is a simple example of a derived
callback class. As required, CPcmToId3Callback provides implementations for the two pure-
virtual functions, ResultCallback() and LogCallback(). You must replace CPcmToId3Callback
with a similar class – one that handles ResultCallback() and LogCallback() in a way that is
appropriate for your application.

Note The WatermarkCallback() function is provided only for test/debug purposes. It returns
a JSON string that holds the settings of each extracted audio code.

virtual void ResultCallback(uint8_t *pBuff, uint32_t
len)

The SDK library invokes a call to ResultCallback() when it has an ID3 tag to deliver to
your application.

Note the following regarding ResultCallback():

○ Normally the Nielsen libraries call ResultCallback() at intervals that range from 5
to 10 seconds (to report an ID3 DATA Tag).

○ If there are no watermarks in the audio content, the libraries do NOT generate
DATA tags during the period in question. For watermark-free audio content, the
SDK libraries generate only INFO tags, and those occur at five-minute intervals.

○ Your application must copy all <len> bytes from address <pBuff> into the HLS or
MPEG-DASH container that holds the ID3 tag. It must not truncate or modify the
ID3 tag in any way (except to split it, as required, between transport packets).

○ PCM-to-ID3 SDK owns <pBuff> and is responsible for allocating and freeing
memory for the buffer. Your application should neither allocate nor delete this
memory.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 20 Nielsen Confidential

virtual void LogCallback(uint16_t code, char *pMessage
= 0, uint32_t size = 0)

CPcmToId3TagApi calls LogCallback() when it has errors or status messages to report.
If the size argument is set to 0, then you may assume that the pMessage argument (if
not null) is a null-terminated string. Nielsen requires that you record in your log file all
messages delivered by LogCallback.

5.5. CPcmToId3Properties Object

Figure 13 – CPcmToId3Properties Method Calls

The CPcmToId3Properties class allows you to set all fields of the INFO tag. When you have
properly configured an object of type CPcmToId3Properties, you must deliver a pointer to the
object to the CPcmToId3Api constructor.

Note that, for the purpose of backward compatibility, we have not removed the Get/Set
methods for breakout-code and streaming-mode. However, the SDK hard-codes the settings
for both of these fields to 0, ignoring any “Set” calls that your sample application may invoke.

PCMID3_SAMPLE_RATE_E GetSampleRate()
bool SetSampleRate(PCMID3_SAMPLE_RATE_E sampleRate)

GetSampleRate() and SetSampleRate(): number of samples per second per channel of
the source PCM audio stream. The supported rates in Hz are 48000, 44100, 32000,
24000, 22050, and 16000. If your application indicates that the audio frequency is any
value other than 24 kHz, the Nielsen software resamples the audio to 24 kHz.

bool SetSampleSizeAndPackingMode(PCMID3_SAMPLE_SIZE_E
sampleSize, PackingMode_t mode)

SetSampleSizeAndPackingMode(): sets the packing mode and number of bits in each
audio sample (16 or 24). If the sample size and packing mode combination is not valid,
this method returns an error.

Supported sample size and packing mode combinations are:

○ For 16-bit samples, packed in a 16-bit container:

Set sampleSize to PCMID3_SAMPLE_SIZE_16BITS

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 21 Nielsen Confidential

Set mode to PACKING_MODE_NOT_USED.

○ For 24-bit samples, packed in a 24-bit container:

Set sampleSize to PCMID3-SAMPLE_SIZE_24BITS

Set mode to THREE_BYTES_LITTLE_ENDIAN

○ For 24-bit samples, packed in a 32-bit container, where the least significant byte is
the padding byte:

Set sampleSize to PCMID3-SAMPLE_SIZE_32BITS

Set mode to FOUR_BYTES_LITTLE_ENDIAN_0_24_PACKING

○ For 24-bit samples, packed in a 32 bit containing, where the most significant byte
is the padding byte:

Set sampleSize to PCMID3-SAMPLE_SIZE_32BITS

Set mode to FOUR_BYTES_LITTLE_ENDIAN

PCMID3_SAMPLE_SIZE_E GetSampleSize()

GetSampleSize(): returns an enum indicating the sample size of the audio.

PackingMode_t GetPackingMode()

GetPackingMode(): returns the packing mode. If each sample is 24 bits in size, the
packing mode defines how the three bytes of audio are packed in one of the follow
container types:

• In a 3-byte container, no padding required:

THREE_BYTES_LITTLE_ENDIAN = 0

• In a 4-byte container, where the most significant byte is the padding byte:

FOUR_BYTES_LITTLE_ENDIAN = 1

• In a 4-byte container, where the least significant byte is the padding byte:

FOUR_BYTES_LITTLE_ENDIAN_0_24_PACKING = 2

For a more detailed explanation, see section 4.2 “16-, 24- and 32-bit Sample Size
Audio Processing.”

PCMID3_DEVICE_TYPE_E GetDeviceType()
bool SetDeviceType(PCMID3_DEVICE_TYPE_E type)

GetDeviceType() and SetDeviceType(): get/set methods for the type of device on
which the application is running. The follow values are supported:

• PCMID3_RESERVE_DEV = 0 (reserved)

• PCMID3_STREAMING_DEV = 1 (in-home streaming devices)

• PCMID3_TRANSCODER_DEV = 2 (transcoder - this is the most common)

• PCMID3_SEGMENTER_DEV = 3 (HLS segmenter)

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 22 Nielsen Confidential

void GetSystemVersion(uint8_t *pszSystemVersion, size_t
size)
void SetSystemVersion(uint8_t *pszSystemVersion, size_t
len)

GetSystemVersion() and SetSystemVersion(): Get/Set methods for the INFO tag
system-version field. You have only 4 bytes plus a null-terminator to represent
your system version. If that size is insufficient to hold the entire version number,
then set the INFO-tag field to a value that uniquely identifies the actual system
version of your product.

For example, assume that the version string for your released product is 5.2.3.401
and that your next release will be 5.2.4.102. You could use “0001” to represent
5.2.3.401 and “0002” to represent 5.2.4.102. The string setting is your choice.
However, there must be a way to link it to a specific, complete system version
number upon request.

If your system-version string is shorter than 4 characters, simply null-terminate the
string after the last character. The SDK will fill the remainder of the string with
spaces.

The size argument of the Get function defines the number of bytes that you have
allocated to the receiving buffer. The <len> argument of the Set function is
optional. You may simply null-terminate pszSystemVersion and present it as the
only argument to the Set function.

void GetVendorId(uint8_t *pszVendorId, size_t size)
void SetVendorId(uint8_t *pszVendorId, size_t len)

GetVendorId() and SetVendorId(): Get/Set methods for the vendor ID field of the
INFO tag. Nielsen assigns a 3-digit vendor ID to you before you certify your
transcoder equipment.

The vendor ID is represented as a 3-byte character string, followed by a null
terminator.

The size argument of the Get function defines the number of bytes that you have
allocated to the receiving buffer. The len argument of the Set function is optional.
You may simply null-terminate pszVendorId and present it as the only argument to
the Set function.

void GetDeviceId(uint8_t *pszDeviceId, size_t size)
void SetDeviceId(uint8_t *pszDeviceId, size_t len)

GetDeviceId() and SetDeviceId(): Get/Set methods for the device ID field of the
INFO tag. The device ID identifies the device hosting the server software. The ID
may be up to 17 bytes long (16 bytes of data, plus a null terminator byte). If you
present a string that is too long, the Nielsen software truncates the character string
after 16 bytes, setting the last byte to a null-terminator.

The size argument of the Get function defines the number of bytes that you have
allocated to the receiving buffer. The len argument of the Set function is optional.
You may simply null-terminate pszDeviceId and present it as the only argument to
the Set function.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 23 Nielsen Confidential

void GetAudioCodec(uint8_t *pszAudioCodec, uint32_t
size)
void SetAudioCodec(uint8_t *pszAudioCodec, uint32_t
size)

The audio_codec field is no longer used. You may leave it empty.

GetAudioCodec() and SetAudioCodec(): Get/Set methods for the audio-CODEC
INFO tag field. The original intent of the audio-codec field was to represent the
CODEC type, the number of channels, and the bit rate of the audio such as “AC3
2.0 192kbps”. The Audio Codec field is 16 bytes long plus a trailing null-terminator.

The size argument of the Get function defines the number of bytes that you have
allocated to the receiving buffer. The len argument of the Set function is optional.
You may simply null-terminate pszAudioCodec and present it as the only argument
to the Set function.

void GetDistributorId(uint8_t *pszDistributorId, size_t
size)
void SetDistributorId(uint8_t *pszDistributorId, size_t
len)

GetDistributorId() and SetDistributorId(): Get/Set methods for the INFO Tag
Distributor ID field.

The distributor ID, a 48-character field followed by a null-terminator, identifies the
distributor of the HLS or MPEG-DASH stream, such as a local broadcast affiliate,
MVPD, or CDN. In most cases, you must provide a method for the end user of
your equipment to set the value of the string. For example, they could set the
distributor ID to the URL of the end user’s website. During the certification process,
you may use a default value representing your own company (“www.xyz.com”), but
you are required to show that your application or system provides a method for the
end-user to reset the value of the string.

If you propose a setting that is too long, the Nielsen software truncates your string
after the 48th character.

The size argument of the Get function defines the number of bytes that you have
allocated to the receiving buffer. The len argument of the Set function is optional.
You may simply null-terminate pszDistributorId and present it as the only
argument to the Set function.

5.6. CPcmToId3Api Object
CPcmToId3Api is your primary interface to the PCM-to-ID3 SDK libraries. Its constructor
accepts a pointer to the CPcmToId3Properties object and a pointer to the
CPcmToId3Callback object. See section 5.5 “CPcmToId3Properties Object.”

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 24 Nielsen Confidential

Figure 14 – CPcmToId3Api

virtual uint16_t Valid()

Valid() returns 0 if and only if the class constructor executed without error.

If an error was encountered, the Valid() function returns a negative error code.

virtual bool Initialize()

Initialize() configures the application prior to the start of audio processing.

If the function runs to completion, it delivers one or more log messages that
indicate the version number of PCM-to-ID3 SDK and of one or more of its
component libraries. Be sure to store the log message on your system so that users
can retrieve them for diagnostic purposes if they encounter problems with the
transcoder.

void Release()

Release() releases system resources.

virtual bool GetEngineVersion(char *pName, uint32_t
size)

GetEngineVersion() sets <pName> to a string that provides the software version
numbers of PCM-to-ID3 SDK and one or more of its component libraries. The size
argument indicates the number of bytes that you have allocated to pName. Be sure
to allocate at least 80 bytes to the pName buffer.

The function returns true if and only if successful.

virtual void InputAudioData(uint8_t *inBuffer, uint32_t
nSize, time_t currentTime)

InputAudioData() accepts PCM audio data from your application and submits the
data to the PCM-to-ID3 engine. It is a blocking call that does not return until the
entire buffer has been processed.

• inBuffer points to the audio data to be processed

• nSize specifies the number of bytes of data in inBuffer.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 25 Nielsen Confidential

o currentTime is a value that must increase by 1 for each second of
processed data. For streaming applications, you may use the POSIX time
code synchronized to the system clock. If the source audio content is read
from file, however, currentTime must accurately reflect the number of
seconds of audio data that have been processed since the beginning of
this ID3-tagging session. Note that if you are generating an MPEG-DASH
package, you could use the currentTime setting to populate the id field of
the emsg box.

While executing the InputAudioData() function, the SDK library may invoke a
call to ResultCallback() in order to deliver a Nielsen ID3 tag to your
application. Most of your calls to InputAudioData(), however, will result in no
calls to ResultCallback() at all, since DATA tags occur at 5-to-10 second
intervals, and INFO tags occur only once every 5 minutes.

It is also possible that InputAudioData() will invoke one or more calls to
LogCallback() to deliver a status or error message to your application. You
should include Nielsen log messages in your log file.

5.7. SdkTypes.h
• SdkTypes.h

○ Describes some of the basic types used by the SDK

○ Validates some of the configuration properties

• PcmToId3Types.h – This header file was included in earlier versions of the SDK, but is
not included in version 2.4. Where applicable, replace #include “PcmToId3Types.h” with
#include “PcmToId3Properties.h”.

• w32stdint.h This file is no longer included in the set of header files. All modern
compilers now recognize <stdint.h>. Replace all instances of #include “w32stdint.h” with
#include <stdint.h>.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 26 Nielsen Confidential

6. SDK Sample Application
The sample application demonstrates how to use the SDK, but does not exercise all of the
SDK capabilities. The sample application assumes that the incoming PCM audio stream is
stored as a WAV file. However, your application most likely will pass in raw PCM audio, not in
WAV format. The simplified WAV reader is provided only for demonstration purposes.

If you are upgrading an existing application to PCM-to-ID3 SDK, version 2.4, please remember
that the new SDK hard-codes the streaming mode to 0 and hard-codes the breakout-code to 0,
ignoring any “Set” calls that your application invokes for either of these two fields.

6.1. Parameters Usage
The sample application creates a binary file holding the generated Nielsen ID3 tags. The name
of the tag file is:

<original WAV file name>_id3tag.out

On loading the WAV file, the SDK checks whether the WAV file has invalid parameters
(for example, an invalid sample rate or sample size). If the SDK finds an invalid
parameter, it stops processing and displays an error report on the console. To use the
sample application, call it from a prompt as follows:

PcmToId3 -i <file> [-o <outdir>][-l <logdir>]

Where:

○ -i <file> is the full path and file name of the WAV file to process. PcmToId3
accepts a WAV file as input, extracts all PCM information from its header, detects
Nielsen watermarks, and generates a file holding generated ID3 tags.

○ -o <outdir> is the full path name of the folder that holds the generated Nielsen
ID3 tags. This is an optional parameter; if it is not provided, the output file is written
to the same location where the original source file is located.

○ -l <logdir> is the full path of the folder that holds error and status reports. This
is an optional parameter. If it is not provided, the log file is written to the same
location where the original input file is located.

○ -pm <mode> is the packing mode, which is required to process audio with 24-bit
samples. When processing WAV files whose audio has 24-bit (or 24-bit packed as
32-bit) samples, you must specify the packing mode. For audio with 16-bit
samples, do not use the –pm option.

0 = THREE_BYTES_LITTLE_ENDIAN

1 = FOUR_BYTES_LITTLE_ENDIAN (24_0 packing)

2 = FOUR_BYTES_LITTLE_ENDIAN_0_24_PACKING

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 27 Nielsen Confidential

3 = PACKING_MODE_NOT_USED (default)

See section 6.2, “PcmToId3 Components,” for more detailed information.

○ -h displays command-line options usage. This is an optional parameter. It is
ignored if used with other commands. The usage can also be displayed if the
application is called with unexpected parameters or no parameters at all.

○ -v is an optional parameter that allows you to turn on verbose debug messages
(primarily to mark the generation of INFO tag or to turn on the reporting of audio
codes through the WatermarkCallback() function). This parameter is provided only
for the purpose of testing/debugging.

○ -loop is an optional parameter that is used only for the purpose of continually
reprocessing a single input WAV file. It is provided ONLY for the purpose of
testing/debugging. The output ID3 tags that the application generates when run in
loop mode will contain many errors in fields that pertain to watermark times
(because the times roll backward at the loop-back point).

6.2. PcmToId3 Components
The sample application is comprised of three main elements:

• PcmToId3App.cpp file

• CPcmToId3Callback (.cpp and .h) object

• CPcmToId3Processor (.cpp and .h) object

The sample application must statically link to the PcmToId3Sdk library or libraries.

6.2.1. PcmToId3App File
The PcmToId3App.cpp file is the main entry point to the sample application. It instantiates the
CPcmToId3Processor object which, in turn, parses and interprets the command-line parameters.

6.2.2. CPcmToId3Callback (.cpp and .h) Object
The CPcmToId3Callback object implements the IPcmToId3Callback interface that defines the
callback methods. Before creating the CPcmToId3Api object, your application must create an
instance of your callback class and then pass a pointer to the callback object to CPcmToId3Api.

This callback object implements the two of the pure-virtual methods defined in
IPcmToId3Callback:

virtual void ResultCallback(uint8_t *pBuff, uint32_t
len)

CPcmToId3Api calls ResultCallback() whenever it has an ID3 tag to deliver. .

virtual void LogCallback(uint16_t code, char *pMessage
= 0, uint32_t size = 0)

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 28 Nielsen Confidential

CPcmToId3Api calls LogCallback() whenever it has an error or status message to
report.

At roughly 10-second intervals (or less), the CPcmToId3Api object invokes the
ResultCallback() method to deliver DATA tags to your application. CPcmToId3Api
generates INFO tags at 5-minute intervals. The length of these intervals is
approximate.

In the SDK sample application, the DATA and INFO tags are stored in a file. In
contrast, your application must copy the entire unaltered 271-byte ID3 tag into the
output (HLS or MPEG-DASH) stream.

6.2.3. CPcmToId3Processor (.cpp and .h) Object
The CPcmToId3Processor object instantiates and configures the CPcmTpId3Callback and
CPcmToId3Properties objects. It instantiates and directly interfaces with the SDK through the
CPcmToId3Api class. It parses, validates, and processes all parameters passed by the user.

The CPcmToId3Processor class is instantiated and destroyed by PcmToId3App, and it lasts for the
duration of the sample application.

7. SDK Test Files
When you receive your SDK package, Nielsen grants you access to a portal from which you
may download the following:

• Three watermarked transport-stream test files

• Nielsen ID3 Tag Validator (a Windows console application that you may use as a
diagnostic tool)

• Instructions for certifying your application or device

If you need further support in downloading these files, contact your Nielsen technical
representative.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 29 Nielsen Confidential

Appendix A—Frequently Asked Questions
1. Can input streams have more than one audio channel?

The SDK can process only a single audio channel. This document describes the
kind of audio pre-processing required for stereo or 5.1 channel audio inputs. For
more information, see section 2 “Concept” and section 4 “Audio Input.”

2. Does audio pre-processing occur inside the SDK?

Your application is responsible for pre-processing the audio (creating a monaural
stream); however, in some cases the SDK will resample the audio that you
present. The sample application included in this package demonstrates the case of
a stereo audio source, where it passes only the left channel of audio to the SDK.
For audio in the 5.1 surround format, see section 2, “Concept” and section 4
“Audio Input.”

3. What are the current versions of the SDK and Audio SDK in use?

To print the current version of the SDK and of the Audio SDK that is contained
within it, call the CPcmToId3Callback::GetEngineVersion() method. See section
5.5 “CPcmToId3Properties Object.”

4. Is there any tool to decode an *.id3tag.out file generated by the SDK?

You may download Nielsen ID3 Tag Validator (a Windows console application that
you may use as a diagnostic tool). Contact your Nielsen technical representative
for more information about the Nielsen ID3 Tag Validator.

5. What are the valid sample frequencies for the audio provided to the SDK? The
valid sample frequencies are:

• 16 kHz

• 22.05 kHz

• 24 kHz

• 32 kHz

• 44.1 kHz

• 48 kHz

Any other value causes the SDK to return an error. The sample application prints
the error message in the log file and standard output. The SDK resamples the
audio content to 24 kHz before presenting it to the core engine.

6. What are the valid audio sample sizes that the SDK can process?

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 30 Nielsen Confidential

The only valid sample sizes are 16 and 24-bits. Conditions may exist, however,
where a 32-bit audio sample size can be processed. See section 4.2 “16-, 24- and
32-bit Sample Size Audio Processing.” All supported combinations of sample size
and packing mode are described in section 5.5, “CPcmToId3Properties Object.”
Unsupported sample resolutions produce error messages.

7. Can the SDK library process 32-bit audio?

Strictly speaking, it cannot correctly process an audio file of 32-bit samples sizes.
However, it can process 24-bit audio samples packed in 32-bit containers. See
section 4.2 “16-, 24- and 32-bit Sample Size Audio Processing” and section 5.5,
“CPcmToId3Properties Object.”

8. What Microsoft Windows operating system platforms does the SDK support?

The SDK supports Windows 64-bit operating systems. The SDK should work on
Windows 7 and later versions. See section 5.2 “SDK Static Libraries.”

9. What Linux® OS versions does the SDK support? Are there any constraints? The
SDK supports Linux 64-bit (GCC must be at least version 5.4). See section 5.2
“SDK Static Libraries.”

10. How do I multiplex the ID3 tags into the original transport stream?

If you are multiplexing a Nielsen ID3 tag PES into the original transport stream,
remember to add the required descriptors in the PMT table. These descriptors are
described in by Section 2 of Timed Metadata for HTTP Live Streaming. See
section 1.4, “References and Related Documents.” Note that other rules apply
when you are generating MPEG DASH streams. If you are generating MPEG-
DASH content, see Appendix D—Insert ID3 Tags into an MPEG-DASH Stream for
instructions.

11. If the incoming content has multiple audio streams, which of the audio streams
should I process?

If the program that you are processing contains more than one elementary audio
stream, feed only the PRIMARY audio stream to the SDK. The primary audio
stream is defined as the first audio stream listed in the PMT elementary-stream
loop.

12. What should I do if the characteristics (sample rate, sample size, packing mode,
etc.) of the audio being fed to the SDK change?

Whenever the basic characteristics of the audio stream change, make certain to
alert the SDK to those changes by:

a. Calling the Release() method of the CPcmToId3Api object

b. Updating the properties of the CPcmToId3Properties object

c. Calling the Initialize() method of the CPcmToId3Api object

Note that, since the SDK only accepts one audio channel at a time and all the
audio channels are managed outside the SDK, it is not necessary to reinitialize the
SDK if the characteristics of the audio do not change.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 31 Nielsen Confidential

As an example, if the host application must switch from stereo to 5.1 audio, the
application pre-processes the audio before delivering it to the SDK. In the end, it
delivers just a single channel of PCM audio to the SDK. As long as the sample
rate, sample size, and packing mode do not change, the host application does not
need to reinitialize the SDK.

13. The INFO tag fields (Device Type, System Version, Vendor Id, Device Id, Audio
Codec, and Distributor ID) are required to initialize the SDK. Are there any
restrictions pertaining to these settings? Are these fields mandatory?

Yes, most of these fields are mandatory. Only the Audio CODEC is optional. See
Appendix C—PCM-to-ID3 SDK UI Settings.

14. If the audio input does not contain Nielsen watermarks, can the PCM-to-ID3 SDK
be configured to generate DATA tags every 10 seconds?

With the current software, no, you cannot. If non-watermarked audio is fed to the
PCM-to-ID3 SDK, no DATA tags are generated.

15. What VOD breakout code mode setting should I use? Is it different for each
content/channel? Should it be exposed in the UI? If yes, at what level, per-
application or per-content? Could you provide some explanation of the significance
of this setting and how it applies to content such as time-shifting, start-over, catch-
up, etc.?

Always set the breakout code to 0.

16. Is it possible that watermarks are not present in audio input during certain periods?
If there are no watermarks in the input audio, does the PCM-to-ID3 SDK instance
periodically output something? Would the operator be interested in being informed
that a particular channel that is configured to detect Nielsen is not generating
Nielsen tags?

Yes, there are instances where Nielsen Watermarks can disappear, but it is
unusual. It normally happens in periods of silence. The PCM-to-ID3 SDK does not
generate DATA ID3 tags during those silent periods.

17. What value should be passed in for p_distributor_id in the TI 6424 DSP library?

This has the same meaning as DistributorId for the non-DSP software. The field
should be set to a string that represents the content distributor. See Appendix E—
DSP Library Implementation.

18. If an input transport stream contains multi-language audio elementary streams,
should watermarks from all audio elementary streams be processed by a single
instance of the SDK and the resulting tags put into a single Nielsen ID3 elementary
stream in the transport stream output?

No. For each program in a transport stream, only the PRIMARY audio PES should
be processed. This is acceptable because all of the audio PES for a single
program are watermarked with the same codes.

19. If the host application is used by third parties to provide video services, would the
Distributor ID value identify the third party?

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 32 Nielsen Confidential

The Distributor ID is used to identify the end-user of the transcoder software (the
final distributor of the audio/video content).

20. What do we need to do to certify our application or device for production use?

A well-defined certification process is documented on the Nielsen Engineering
Forum, where you can download test files and diagnostic tools. Contact your
Nielsen technical representative for more information.

21. To be able to differentiate Nielsen ID3 PES from other ID3 PES (still image), would
the PES be associated with an NMR1 registration descriptor?

We do not use registration descriptors. We use the industry standard metadata
descriptor, as defined by the ID3.org in the ID3 Engine design document.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 33 Nielsen Confidential

Appendix B—Factors that Can Affect
Decoding

Nielsen Audio Watermarks were designed to survive audio compression when the bitrate is
maintained at the recommended level (Table 2).

Code recovery may be affected when the audio is clipped or near silence.

Table 2 – Acceptable Audio Compression rates

Audio Compression Compression Rate

AC3 Stereo 192 Kbps or higher

AC3 5.1 384 Kbps or higher

Enhanced AC3 192 Kbps

MPEG2 audio 192 Kbps or higher

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 1 Nielsen Confidential

Appendix C—PCM-to-ID3 SDK UI Settings
Transcoders that implement the PCM-to-ID3 SDK are responsible for setting the breakout code to 0 and for correctly setting the INFO
tag fields. The transcoder user interface must provide a means for the end user to set the breakout code and the Distributor ID.

ID3 INFO Tag Fields
Table 3 – ID3 INFO Tag Field

INFO Tag
Name

Description
Value Comment

Device
Type

One-byte value identifying the class of your
device. If your device does not fall into one
of these types, contact Nielsen technical
representative about defining a new device
type.

PCMID3_RESERVE_DEV = 0 Reserved: do not use.

PCMID3_STREAMING_DEV = 1 In-Home Streaming Device (not typical);
for gateway devices that transcode
MPEG-2 TS streams to HTTP adaptive
bit-rate streaming protocols

PCMID3_TRANSCODER_DEV = 2 Transcoder (most common designation)

PCMID3_SEGMENTER_DEV = 3 Segmenter

System
Version

Your software version; helps in tracking
down and isolating specific problems in the
field

If software version is “2.1.3.1”, the string
should be:

“2131” + ‘\0’

Example showing shorter string:

“21” + ‘\0’

If the string is longer than 4 bytes, the
SDK truncates and null-terminates at the
fifth character. It is not necessary to pad
shorter strings.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 2 Nielsen Confidential

INFO Tag
Name

Description
Value Comment

Vendor ID Nielsen assigns a vendor ID to you as the
vendor of the application or system; this
setting helps Nielsen identify devices that
experience problems in the field.

Example:

“501” +‘\0’

Please ask your Nielsen technical
representative to provide you with a
vendor ID if you do not already have one.

Device ID At a minimum, the device ID should identify
the product name of your device or
application. Alternatively, you could use the
hardware serial number to identify the
specific device on which your application
runs.

Example:

“V12345678A-3” + ‘\0’

If the string is longer than 16 characters,
the SDK truncates and null-terminates at
the 17th character.

Audio
Codec

(Optional) Audio codec that your software
uses to generate PCM audio

Example of freeform value:

“AC3 5.1 384kbps” + ‘\0’

If the string is longer than 16 characters,
the SDK truncates and null-terminates at
the 17th character.

Distributor
ID

DNS domain name of the company or entity
operating the device in the field (the
company that is distributing the content).
Your system must provide the end-user with
a way to configure this setting.

Example showing values padded with
trailing spaces. Where possible, add
descriptive information at the end of the
DNS name to help identify the region or
location of the transcoding device.

Example:

“www.directv.com” + ‘\0’

If the string is longer than 48 characters,
the SDK truncates and null-terminates it at
the 49th character.

http://www.directv.com/

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 3 Nielsen Confidential

Appendix D—Insert ID3 Tags into an
MPEG-DASH Stream

If you plan to package the Nielsen ID3 Tags into an MPEG-DASH container, follow the
guidelines in in ISO/IEC 23009-1:2014(E). This appendix describes how you must customize
your MPEG-DASH container to include Nielsen ID3 tags.

Media Presentation Description (MPD)
Your MPEG-DASH package must contain a “static” Media Presentation Description (MPD),
as described in ISO/IEC 23009-1:2014(E), section 5.3.2.1, where a “static” MPD is defined by
these properties

• It does not have an @start attribute.

• The @type attribute is set to “static”.

• The Period element is the first in the MPD. In the Period element of that static MPD,
you must include this line, which identifies the in-band event stream that holds
Nielsen ID3 tags:

 <InbandEventStream
schemeIdUri="www.nielsen.com:id3:v1" value="1"/>

Event Message (emsg) Box
Your MPEG-DASH package should carry each Nielsen ID3 tag in the Event message (emsg)
box of the segment to which it applies. If audio segments are carried separately from video
segments, the Nielsen in-band event message should be carried with the audio segment.

The syntax of the emsg box carrying the ID3 tags is defined in section 5.10.3.3.3 of ISO/IEC
23009-1:2014(E). These byte-aligned fields must follow the box type (“emsg”) and length (4
bytes, with recommended setting of 0):

• Scheme_id_uri (23 bytes): a null-terminated ASCII string, set to
“www.nielsen.com:id3:v1”

Note that this string matches the stream_id_uri in the MPD; this requirement is
specified in section 5.10.3.3.1 of ISO/ID3 23009-1:2014(E).

• Value (2 bytes): a null-terminated ASCII string, set to “1”

• Timescale (4 bytes): recommended value is 90000, indicating that the presentation
time delta is based on a 90 KHz clock (90,000 ticks per second). This field, however,
has no functional use and may be set to 0.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 4 Nielsen Confidential

• Presentation_time_delta (4 bytes): recommended setting is the difference (in clock
ticks) between the time when the ID3 tag event is presented and the earliest
presentation time in this segment. However, this field has no functional use and may
be set to 0.

• Event duration (4 bytes): must be set to 0xffff, indicating an unknown duration

• ID (4 bytes): Recommended setting is a value that identifies this instance of the
message; for example, you could use a “clock” value that advances by 1 for each
second of processed audio. However, this field has no functional use and may be set
to 0.

• Message_data (271 bytes): the complete 271-byte ID3 tag, starting with the ID3 tag
header and ending with the ASCII character “A.” Whenever the PCM-to-ID3 SDK
ResultCallback returns an ID3 tag, you must copy the entire 271-byte tag into the
emsg box message-data. See section 19 of this document for information about the
result callback. If there are two or more ID3 tags to be inserted into the emsg box,
they must be separated by the ASCII EOL character.

See section 5.10.3.3 of ISO/IEC 23009-1:2014(E) for a complete description of Event
message boxes. See section 5.10.3.2 for a description of MPD signaling.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 5 Nielsen Confidential

Appendix E—DSP Library Implementation
The DSP library is designed to be linked with the Texas Instruments™ TMS320C6424 Fixed-
Point Digital Signal Processor. The development environment is TI’s Code Composer
Studio™ version 3.3 or later.

Library Memory
The size of the memory buffer is 512 bytes for audio when captured at 48KHz (or 256 bytes
for 24KHz) and 271 bytes for the ID3 tag buffer.

The following sections of memory are defined and used inside the library. These sections
need to be defined in the application’s linker file. Mapping to other sections may be possible
but performance could suffer. Memory used in the library is static and is identified by the
following data_sections:

• .id3MemInt > IRAM //Internal Memory

• .id3MemExt > DDR2 //External Memory

All large buffers are aligned on cache boundaries (128-byte cache line size for L2 cache on
C6000).

Library Development
DSP library development is carried out using the TI C6424 evaluation board and associated
framework. The development effort is split into the following projects:

• DSP development project

This project contains all necessary files for initializing the evaluation board for
capturing audio, decoding Nielsen watermarks, and generating the Nielsen ID3 tag
buffer.

• DSP library project

This project only contains source files for PCM fixed-point decoder and ID3 tag
utilities. This is a subset of the development project and outputs pcmId3Lib.lib.

The DSP library project includes the pcmId3Lib.lib and pcmId3Lib.h files.

• DSP test project

This project is the same as the DSP development project with the exception that it
integrates pcmId3Lib.lib with the evaluation board initialization source code.

This project simulates the integrated framework using pcmId3Lib.lib generated from
PCM ID3 library project.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 6 Nielsen Confidential

Library Testing
DSP library testing is carried out using the TI C6424 evaluation board. The DSP development
project is used for tests by using the DSP/BIOS Log utility. This is only for verifying
functionality and not to be used for benchmarking performance as this process is unable to
run in real time. Full benchmarking and performance must be carried out as described below.

Library Performance Benchmark
As there are many ways to configure a DSP, here are some examples of the type of
performance one may expect. Audio, as shown in the example in Figure 15 is supplied as
1024 samples (512 L, 512 R) in a buffer sampled at 48k. This represents a duration of 10.66
milliseconds.

Figure 15 – Timing Diagram for Audio Buffer Processing

With the L2 cache set, program execution takes 2.3 milliseconds when a code is detected.

Audio is accumulated over time in the input buffer. When the audio buffer is full, the function
pcmId3Gen call is made to the library. In the example above, the buffer size is 256 mono-
samples at a 24Khz sample rate. This is the native buffer size for code extraction. The ID3
DATA tag gets generated when all 10 EDU slots are filled or after 10 seconds of elapsed time
and at least one tag has been received, whichever occurs first. The ID3 INFO tag gets
generated once every 5 minutes.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 7 Nielsen Confidential

Library Function Calls

pcmId3LibInit
Use pcmId3LibInit to initialize the system as follows:

PCMID3_RETURN_E pcmId3LibInit(
uint8_t *p_vendor_id,
 uint8_t device_type,
uint8_t *p_device_id
uint8_t *p_system_version,
uint8_t *p_audio_codec,
 uint8_t *p_distributor_id,
 uint8_t breakout_flag,
PCMID3_SAMPLE_RATE_E audio_sample_rate,
 void *pDecDS,
 void *pId3DS)

Table 4 – pcmId3LibInit

Parameters Description Value or Example

vendor_id 3 bytes, assigned by Nielsen

device_type Type of the device 0 = Reserved

1 = In-home streaming device

2 = Transcoding device

3 = Stream
segmenter/packager

4 – 255 = TBD

device_id 16-byte unique ID or serial number

system_version 4-byte version number of the
application or system software

audio_codec Optional, no longer used

16-byte ASCII text field holding the
audio codec type description and
bitrate

Examples:

“AC3 5.1,384kbps ”

“AAC-HE,192kbps ”

If the string:

• Does not fill the 16-
character field, you
must add trailing
spaces.

• Is longer than 16
characters, the SDK
truncates and null-
terminates it at the 49th
character. Examples:

distributor_id 48-byte MVPD/CDN identifier
(distributor)

audio_sample_rate Sample at which audio will be
supplied

0 = 24K

3 = 48K (default is
PCMID3_FREQ_48KHZ)

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 8 Nielsen Confidential

Parameters Description Value or Example

breakout_flag 1-byte value Set to 0

pDecDS Pointer to watermark decoder context

pId3DS pointer to pcmId3 context

pcmId3Gen
The function prototype is the following:

PCMID3_RETURN_E pcmId3Gen(short *pf_pcmBuf, uint32_t
u32_current_time, uint8_t *pu8_id3TagBuf, void
*pDecDS, void *pId3DS);

This function call performs all processing and, upon successful generation of an ID3 tag,
pu8_id3TagBuf is populated with ID3 data. These are the expected return values:

• PCMID3_RETURN_TAG indicates successful generation of a tag.

• PCMID3_RETURN_NO_TAG indicates no tag has been generated.

Evaluation Board Initialization
C6424 EVM is initialized to capture stereo 1024(512L, 512R) audio sample blocks using AIC
33, McBSP1, and EDMA3 at 48KHz.

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 9 Nielsen Confidential

Glossary
E
EDU

Elemental Data Unit. A sub-container in the Nielsen ID3 tag that holds an individual Nielsen watermark. A single ID3
tag can hold up to 10 EDUs.

F
FD Watermark

Nielsen Watermark used to track the final distributor (FD) of the audio content, and not the content itself.

H
HLS

HTTP Live Streaming. The Apple-defined HTTP-based adaptive rate streaming protocol.

I
ID3

Apple’s solution for delivering metadata in streaming content

ID3 Specification

ID3 refers to a metadata container most often used in conjunction with the MP3 audio file format. The ID3
specification allows information such as the title, artist, album, track number, and other information about a file to be
contained within the music file itself. In Nielsen’s case, the ID3 tag specification is used to carry Nielsen watermarks.

M
MPEG-DASH

“DASH is an adaptive bitrate streaming technology where a multimedia file is partitioned into one or more segments
and delivered to a client using HTTP.” (Source: “Dynamic Adaptive Streaming over HTTP.” Wikipedia. Accessed
1017-04-04. https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP)

MPD

MPEG-DASH Media Presentation Description. “A media presentation description (MPD) describes segment
information (timing, URL, media characteristics like video resolution and bit rates), and can be organized in different
ways such as SegmentList, SegmentTemplate, SegmentBase and SegmentTimeline, depending on the use case.[9]
Segments can contain any media data, however the specification provides specific guidance and formats for use with
two types of containers: ISO base media file format (e.g. MP4 file format) or MPEG-2 Transport Stream.” (Source:
“Dynamic Adaptive Streaming over HTTP.” Wikipedia. Accessed 1017-04-04.
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP)

https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP
https://en.wikipedia.org/wiki/Dynamic_Adaptive_Streaming_over_HTTP

PCM-to-ID3 SDK Developer Guide

Release 2.4 Revision N 10 Nielsen Confidential

N
Nielsen Watermark

A proprietary audio algorithm developed by Nielsen to insert inaudible watermark information in the audio portion of
media content to enable audience-viewing measurement.

P
PC Watermark

Audio watermark used to track program content (as opposed to the distributor of that content).

PCM

Pulse Code Modulation

PES

Packetized Elementary Stream

PID

Program Identifier

PMT

Program Map Table

S
SID

Source Identifier is Nielsen-specific term. Source IDs are associated with Nielsen watermarks that are injected into
ID3 tags by Nielsen’s PCM-to-ID3 SDK for retrieval downstream by mobile consumer devices.

	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.2. Out of Scope
	1.4. References and Related Documents

	2. Concept
	2.1. System Overview
	2.2. Transcoder Application Overview
	2.3. Tasks Performed by Your Transcoder
	2.4. Tasks Performed by the Nielsen PCM-to-ID3 SDK
	2.5. Quick Start
	2.6. Deprecated Streaming Modes and Functions
	2.7. Removing Pre-existing Nielsen ID3 Tags

	3. Nielsen ID3 Tags
	3.1. Tag Types
	3.1.1. INFO Tag
	3.1.2. DATA Tag

	3.2. Tag Size
	3.3. Tag Timing
	3.4. Tag Synchronization

	4. Audio Input
	4.1. Overview
	4.2. 16-, 24- and 32-bit Sample Size Audio Processing
	4.3. Audio from Stereo Source
	4.4. Audio from Multi-Channel Source

	5. SDK Package
	5.1. SDK Package Description
	5.2. SDK Static Libraries
	5.3. Using the SDK
	5.4. IPcmToId3Callback.h Interface
	5.5. CPcmToId3Properties Object
	5.6. CPcmToId3Api Object
	5.7. SdkTypes.h

	6. SDK Sample Application
	6.1. Parameters Usage
	6.2. PcmToId3 Components
	6.2.1. PcmToId3App File
	6.2.2. CPcmToId3Callback (.cpp and .h) Object
	6.2.3. CPcmToId3Processor (.cpp and .h) Object

	7. SDK Test Files
	Appendix A—Frequently Asked Questions
	Appendix B—Factors that Can Affect Decoding
	Appendix C—PCM-to-ID3 SDK UI Settings
	ID3 INFO Tag Fields

	Appendix D—Insert ID3 Tags into an MPEG-DASH Stream
	Media Presentation Description (MPD)
	Event Message (emsg) Box

	Appendix E—DSP Library Implementation
	Library Memory
	Library Development
	Library Testing
	Library Performance Benchmark
	Library Function Calls
	Evaluation Board Initialization

	Glossary

