

Nielsen Confidential

Decoder SDK Monitor 1.4

Developer Guide

Revision B

Copyright © 2018,2019 Nielsen (US), LLC. All rights reserved.

Nielsen and the Nielsen Logo are trademarks or registered trademarks of CZT/ACN Trademarks, L.L.C.

Ubuntu® is a registered trademark of Canonical Ltd.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft® and Windows® are either registered trademarks or trademarks of Microsoft Corporation in the United

States and/or other countries.

Other company names, products and services may be trademarks or registered trademarks of their respective

companies.

This documentation contains the intellectual property and proprietary information of The Nielsen Company (US) LLC.

Publication, disclosure, copying, or distribution of this document or any of its contents is prohibited.

Revision History

Revision Date Description Engineer

A 2018-07-27 Initial version Lois Price

Julia Wen

Lore Eargle (editor)

B draft 2 2019-04-25 Release 1.3: added timestamps to Summary Report. Lois Price

Lore Eargle (editor)

Decoder SDK Monitor 1.3 Developer Guide

Revision A 2 Nielsen Confidential

Contents

1. Introduction ... 4
1.1. Purpose ... 4
1.2. Out of Scope ... 4
1.3. Audience ... 4
1.4. Terminology ... 4

2. Concept .. 5
2.1. Monitor Application Overview .. 5
2.2. Tasks Performed by Your Monitor ... 5
2.3. Tasks Performed by the Decoder SDK Monitor .. 6

3. Nielsen Audio Codes .. 6
3.1. Audio Code Types ... 6
3.2. Station Identifiers (SIDs) ... 7
3.3. Timestamps ... 8

3.3.1. NAES 2 and NAES 6 (NW) Timestamps ... 8
3.3.2. CBET Timestamps .. 8
3.3.3. NW CC and N2 HF Audio Codes .. 8
3.3.4. NAES 6 INFO SIDs ... 8

4. Audio Input .. 9
4.1. Overview ... 9
4.2. 16-, 24- and 32-bit Sample Size Audio Processing ... 9
4.3. Audio from Stereo Source ... 10
4.4. Audio from Multi-Channel Source ... 10

5. SDK Package ... 10
5.1. SDK Package Description ... 10
5.2. SDK Static Libraries .. 13
5.3. Using the SDK ... 13
5.4. IMonitorSdkCallback.h Interface ... 13
5.5. CMonitorSdkParameters Object .. 14
5.6. CMonitorApi Object ... 14

6. SDK Sample Application .. 15
6.1. Parameters Usage .. 15
6.2. Sample Application Components .. 16

6.2.1. MonitorSdkSampleApplication File .. 17
6.2.2. CAudioProcessor (.cpp and .h) Object .. 17
6.2.3. CMonitorSdkCallback (.cpp and .h) Object ... 17
6.2.4. CMonitorSdkOptions (.cpp and .h) Object ... 20
6.2.5. CWaveReader (.cpp and .h) Object .. 20
6.2.6. CChannelExtractor (.cpp and .h) Object .. 20

Appendix: Factors that Can Affect Decoding .. 21

List of Figures

Figure 1: Decoder SDK Monitor Components .. 6

Decoder SDK Monitor 1.3 Developer Guide

Revision A 3 Nielsen Confidential

Figure 2: 16-Bit Audio Packed in 2 Bytes ... 9

Figure 3: 24-Bit Audio Packed in 3 Bytes ... 9

Figure 4: 24-Bit Audio Packed in 4 Bytes with MSB Padding ... 9

Figure 5: 24-Bit Audio Packed in 4 Bytes with LSB Padding .. 10

List of Tables

Table 1: Audio Code Types .. 6

Table 2: Contents of SDK Package .. 11

Table 3: Code Types and Descriptions ... 18

Table 4: Coded Warnings in Warning List .. 19

Table 5: Acceptable Audio Compression rates for Code Recovery .. 21

0B

Decoder SDK Monitor 1.3 Developer Guide

Revision A 4 Nielsen Confidential

1. Introduction

1.1. Purpose

The Nielsen_Decoder_SDK_Monitor package provides tools for C++ software developers

to create a system that monitors Nielsen audio codes. In response to receiving small

buffers of audio from the calling application, the Decoder SDK Monitor periodically

invokes a callback to deliver the following:

• A list of Nielsen codes detected since the last report

• A list of alarms arising from error conditions encountered during the same period.

This document describes the concepts and usage of the SDK.

1.2. Out of Scope

This document does not describe the technical details of Nielsen audio codes.

1.3. Audience

This guide is intended for experienced C/C++ software developers.

Throughout this document, the term “you” refers to the C++ software developer who is

incorporating the Nielsen_Decoder_SDK_Monitor into a monitor application.

1.4. Terminology

• This document uses the terms audio-code monitor, monitor software, and monitor

system interchangeably.

• This document may use the term Monitor SDK or simply SDK to refer to the

Nielsen_Decoder_SDK_Monitor.

• It uses the terms watermarks and audio codes interchangeably.

• It uses the terms NAES 6 and Nielsen Watermarks interchangeably. The

abbreviations N6 and NW both represent Nielsen Watermarks.

• It uses the terms timestamp and time code interchangeably.

• It uses the term CSID to refer to a CBET Station ID.

• The narrow definition of the term SID is the NAES (Nielsen Audio Encoding System)

Station ID

Decoder SDK Monitor 1.3 Developer Guide

Revision A 5 Nielsen Confidential

• Occasionally this document uses the term SID to refer to a generic station ID,

regardless of whether the type is NAES or CBET.

2. Concept

2.1. Monitor Application Overview

It is assumed that your monitor operates within a professional environment where it has

access to Nielsen-watermarked audio. Your monitor delivers buffers of PCM audio to the

Nielsen_Decoder_SDK_Monitor libraries, which, in response deliver periodic reports of

detected audio codes and alert your application to any detected problems.

2.2. Tasks Performed by Your Monitor

In order to interact successfully with the SDK, your application must perform these tasks:

• Identify the sample rate and sample size of the PCM audio that you deliver to the

Nielsen_Decoder_SDK_Monitor. If the sample-size is 24 bits with 32-bit

alignment, you also need to determine whether the single padding byte is

positioned in the most-significant or least-significant byte. Create a

CMonitorSdkParameters object and use its set methods to set the sample size,

sample rate, and channel count.

• For each audio channel, create and initialize a class (derived from

IMonitorSdkCallback) to handle all callbacks (report, alarm, and log). Note that all

three callbacks are defined as pure virtual functions in IMonitorSdkCallback.

• For each audio channel, create and initialize a CMonitorApi object. The CMonitorApi

constructor requires that you pass pointers to your CMonitorSdkParameters and your

derived callback objects.

• Repeatedly deliver buffers of audio to the Nielsen_Decoder_SDK_Monitor library

by calling CMonitorApi::InputAudioData(). If the audio that you are processing has

more than one channel, extract single channels of PCM audio from each audio

buffer, then deliver a single channel of audio to each CMonitorApi object that you

create. Each buffer should hold less than a second of audio data.

• Handle IMonitorSdkCallback::ResultCallback() by parsing the JSON string argument,

retrieving the SID, code type, timestamp, and date/time string of each audio code

in the array, and reporting the codes in a way that meets the requirements of

your monitor.

• Handle IMonitorSdkCallback::AlarmCallback() by parsing the JSON string argument,

retrieving the SID and warning code of each item in the array, and reporting the

alarms in a way that meets the requirements of your monitor.

• Handle IMonitorSdkCallback::LogCallback() by logging the individual status/error

messages in a way that meets the requirements of your monitor.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 6 Nielsen Confidential

2.3. Tasks Performed by the Decoder SDK Monitor

The SDK accepts a single channel of PCM audio sampled at one of the supported

frequencies defined in section 4 “Audio Input.” The SDK down-samples the input audio to

a 24-KHz sample rate, extracts audio watermarks, aggregates the data, then periodically

reports the results to your monitor application by invoking the IMonitorSdk ResultCallback(),

AlarmCallback(), and LogCallback() functions.

Figure 1: Decoder SDK Monitor Components

3. Nielsen Audio Codes

3.1. Audio Code Types

An audio stream may hold any of the types of Nielsen audio codes shown in Table 1:

Table 1: Audio Code Types

Audio Code Type Description Label

NAES 2 FD Final distributor watermark that may exist

as the only NAES 2 code in the stream, or

may share the NAES 2 slot with NAES 2

PC codes.

Designated as N2FD in the

JSON report string

NAES 2 PC Program content watermark that may exist

as the only NAES 2 code in the stream, or

may share the NAES 2 slot with NAES 2

FD codes.

Designated as N2PC in the

JSON report string

Decoder SDK Monitor 1.3 Developer Guide

Revision A 7 Nielsen Confidential

Audio Code Type Description Label

NAES 6 FD Final distributor watermark that may exist

as the only NAES 6 code in the stream, or

may share the NAES 6 slot with up to two

other NAES 6 codes (for a total of one PC

and two FDs or for a total of 3 FD codes)

Designated as NWFD in

the JSON string

NAES 6 PC
Program content watermark that may exist

as the only NAES 6 code in the stream, or

may share the NAES 6 slot with up to two

other NAES 6 codes (for a total of one PC

and two FD codes)

Designated as NWPC in

the JSON report string

NAES 2 High

Frequency

NAES 2 code used with short commercial

(ad) content

Designated as N2HF in the

JSON report string

NAES 6 Commercial

Code

NAES 6 code used with short commercial

(ad) content

Designated as NWCC in

the JSON report string

CBET, Layers 2, 4,

and 5

 Designated as CBL2, CBL4,

and CBL5

INFO SID NAES 6 code used to uniquely identify the

source encoder. If present, appears twice

per hour, at 3 minutes past the hour.

Designated as Info-SID in

the JSON string. The SID

setting indicates that this is

part 1, part 2, or part 3 of a

three-part INFO SID.

RT-VOD NAES 6 code used to indicate that the

content is recently-telecast TV content,

retransmitted as VOD

SID setting indicates that

this is an RT-VOD flag

3.2. Station Identifiers (SIDs)

Most Nielsen audio codes include a station-identifier, a 2-byte or 4-byte value that

uniquely identifies the source encoder as well as the station or content to be credited for

the viewing.

For two types of audio code (RT-VOD and INFO SID), the SID field is used as an audio-

code-type designator, not as a value that uniquely identifies a station or a piece of

content.

Note that NAES 2 PC and NAES 6 PC may share the same SID. Likewise, the NAES 2

FD SID and the NAES 6 FD SID may have the same value. NAES SIDs usually appear in

decimal format.

CBET SIDs are often referred to as media codes or CSIDs. They usually appear in

hexadecimal format.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 8 Nielsen Confidential

3.3. Timestamps

Most Nielsen audio codes include a timestamp field, a 4-byte value that, in many cases,

provides information about when the content was encoded. For some types of audio

codes, it is associating a date/time string with the timestamp is useful. For others, the

timestamp carries information that is not directly related to a specific date and time. The

paragraphs below describe the interpretation of the timestamp field for each of the audio-

code types.

3.3.1. NAES 2 and NAES 6 (NW) Timestamps

In most cases, the NAES-2 and NAES-6 timestamp represents the date/time when the

content was encoded in the local time zone to which the encoder clock was set. For

example, if the monitor delivers a NAES date/time of 04/21/2019 14:33:00, and if the

NAES encoder clock was set to Pacific Daylight Time, we know that it was 2:33 PM on

April 21, 2019, in the time zone to which the encoder clock was set.

NAES PC codes may be the exception to this rule. If the 4-byte timestamp field is a TIC

(time in content) representing an offset from the beginning of pre-recorded content (VOD,

for example), then the value should not be interpreted as a date/time.

3.3.2. CBET Timestamps

As opposed to NAES audio codes, CBET timestamps represent the time when the

content was encoded as Coordinated Universal Time (UTC). For example, if the monitor

SDK libraries deliver a CBET date/time of 04/21/2019 14:33:00, we know that the content

was encoded at 2:33 PM on April 21, 2019 [UTC ++00]. Because CBET date/time strings

are expressed as UTC, while NAES date/time strings represent local time, reported

CBET times are offset by NAES times by several hours.

When CBET audio codes are used to identify VOD (or other time-shifted viewing), the

timestamp field does not translate reliably to a date/time string.

3.3.3. NW CC and N2 HF Audio Codes

For commercial codes (both NAES 6 and NAES 2), the time-code field does not

represent a clock-time when the content was encoded. Therefore, no date/time string is

associated with the raw timestamp.

3.3.4. NAES 6 INFO SIDs

The timestamp field in some NAES 6 audio codes (including INFO SIDs and RT-VOD

codes) holds information that is not at all related to either a time-offset or a clock time.

Therefore, no date/time string is associated with the raw timestamp.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 9 Nielsen Confidential

4. Audio Input

4.1. Overview

If the incoming transport stream contains more than one audio stream for a single

program, you must deliver only one channel of audio data to each instance of CMonitorApi.

The SDK supports uncompressed (PCM) audio streams of 24-bit or 16-bit resolution with

a sample rate of 48 KHz or 24 KHz.

4.2. 16-, 24- and 32-bit Sample Size Audio Processing

The SDK processes only PCM audio of 16- and 24-bit sample sizes; however, the 24-bit

audio may be packed in a 32-bit container, which requires a padding byte to be placed

before or after the 24 bits of actual data. Below are the four possible layouts. All layouts

assume the sample is in little endian byte order.

1. Figure 2 shows the layout for 16-bit audio packed in 2 bytes. No padding is

required because the SDK does not require padding instructions.

Low-Order

Byte

High-Order

Byte

Figure 2: 16-Bit Audio Packed in 2 Bytes

2. Figure 3 shows the layout for 24-bit audio packed in 3 bytes. No padding is

required because the SDK does not require padding instructions.

Low-Order

Byte
Middle Byte

High-Order

Byte

Figure 3: 24-Bit Audio Packed in 3 Bytes

3. Figure 4 shows the layout for 24-bit audio packed in 4 bytes with MSB padding.

The padding byte is the most significant byte of the 32-bit sample. The order is

assumed to be little-endian byte.

Low-Order

Byte
Middle Byte

High-Order

Byte
Padding Byte

Figure 4: 24-Bit Audio Packed in 4 Bytes with MSB Padding

Decoder SDK Monitor 1.3 Developer Guide

Revision A 10 Nielsen Confidential

4. Figure 5 shows the layout for 24-bit audio packed in 4 bytes with LSB padding.

The padding byte is the least significant byte of the 32-bit sample. Order is

assumed to be little-endian byte.

Padding Byte
Low-Order

Byte
Middle Byte

High-Order

Byte

Figure 5: 24-Bit Audio Packed in 4 Bytes with LSB Padding

4.3. Audio from Stereo Source

As each CMonitorApi object accepts only one audio channel, if the incoming audio is

stereo, your application must pass only the left audio channel or the right audio channel

to a single SDK object. Do not down-mix left and right channel audio into a single

monaural mix for the audio input to the SDK.

Another option is to create a separate CMonitorApi object for each channel. Each instance

of CMonitorApi must receive a pointer to its own unique callback object.

4.4. Audio from Multi-Channel Source

If you are receiving 5.1-channel audio, you may create a separate CMonitorApi object to

process each channel, registering a unique callback object with each instance of

CMonitorApi. Note, however, that the left-surround, right-surround, and low-frequency-

effects channels will not have NAES 6 (Nielsen watermark) or CBET codes.

If you prefer for your software to implement only a single instance of CMonitorApi, consider

combining the left and center channels. You must scale the audio prior to mixing to

prevent overflow of PCM sample values. Your host application is responsible for

attenuating the center channel audio -3 dB, then adding it to audio from the left channel.

Alternatively, you may use a Dolby® ProLogic® II down mix (Lt or Lo) instead of applying

the above technique.

Once you have combined the left and center channels, you may deliver buffers of audio

from the stream to a single CMonitorApi object.

5. SDK Package

5.1. SDK Package Description

The SDK package contains the SDK library, header files, and sample application

(including source code). The SDK also holds one or more executables, each a version of

the sample application created with different compiler settings. Nielsen offers at least

three packages of Nielsen_Decoder_SDK_Monitor. The packages will become available

in the order listed.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 11 Nielsen Confidential

1. Microsoft® Windows Visual Studio® 2013

2. Microsoft® Windows Visual Studio 2015

3. Linux® CentOS

Table 2: Contents of SDK Package

Platform Folder Contents

All README Legal information

All package\docs Nielsen_Decoder_SDK_Monitor Developer Guide (this

document). Instead of being included in the SDK zip file,

this manual may be distributed separately.

All package\apps One or more executables compiled from the sample

application, customized for the platform (Linux, Windows)

that you have selected

All \lib

Holds the libraries to which your application must link. For

Windows builds, you need to link only to libMonitorSdk.lib,

which includes all of the component libraries. The package

includes separate libraries to support statically linked and

dynamically linked C-runtime libraries.

For Linux builds, link to these component libraries in

addition to libMonitorSdk.a, libCBETDecoder.a, libCBETqoe.a,

libNaes2HFDecoder.a, libNaes6Decoder.a,

libNaes2HybridDecoder.a, and libNielsenAudioCore.a.

All \inc C/C++ header files required to interface with the SDK:

• IMonitorSdkCallback.h – a base class from which you

must derive your own callback class. It includes three

pure-virtual functions that you must implement.

• IMonitorSdkProcessor.h – a base class included in

MonitorApi.h. Your application does not directly call any

of the functions defined in this class.

• MonitorApi.h – defines CMonitorApi, the primary interface

to the libraries in libMonitorSdk

• MonitorSdkSharedDefines.h – includes constants and type

definitions shared by the SDK libraries and the sample

application

===================

C/C++ header files provided, with source code, to

demonstrate how to use the classes defined in

libMonitorSdk:

• rapidjson – holds open-source header files required to

parse JSON strings. Copyright / license information is

included with each header file.

• AudioProcessor.h – defines CAudioProcessor, the class

that creates, initializes, and exercises objects whose

classes are defined in libMonitorSdk. Source code is

Decoder SDK Monitor 1.3 Developer Guide

Revision A 12 Nielsen Confidential

Platform Folder Contents

provided for this class.

• ChannelExtractor.h – defines CChannelExtractor, a class

that extracts a single channel from a buffer of multi-

channel audio

• MonitorApplicationDefines.h – typedefs used by the

sample application

• MonitorSdkCallback.h – defines CMonitorSdkCallback, a

class derived from IMonitorSdkCallback to handle report

callbacks, alarm callbacks, and log callbacks.

• MonitorSdkOptions.h – defines CMonitorSdkOptions, a

class that parses, interprets, and stores command-line

arguments

• MonitorSdkParameters.h – defines CMonitorSdk-

Parameters, a class that stores parameters whose

settings must be made available to CMonitorApi

• MonitorSdkSharedDefines.h – SDK typedefs exposed to

the sample application

• WaveReader.h – defines CWaveReader, a class that reads

header information from a WAV file, primarily to extract

the channel-count, the sample size, and the sample

frequency. Uses type definitions included in

WavDefines.h. Like all of the classes whose source code

we provide, this class is provided solely to illustrate the

use of the SDK libraries/header files. It handles only very

basic WAV files. For more complex WAV files, substitute

your own WAV-reader class.

All \MonitorSdkSample

Application

Makefile or Visual Studio project/solution files required to

build the sample application

All \MonitorSdkSample

Application

AudioProcessor.cpp – defines CAudioProcessor. See notes

with AudioProcessor.h.

ChannelExtractor.cpp – defines CChannelExtractor. See notes

with ChannelExtractor.h.

MonitorSdkCallback – defines CMonitorSdkCallback. See

notes with MonitorSdkCallback.h.

MonitorSdkOptions – defines CMonitorSdkOptions. See notes

with MonitorSdkOptions.h.

MonitorSdkSampleApplication – includes a simple main()

function that exercises CAudioProcessor functionality

WaveReader.cpp – defines CWaveReader. See notes with

WaveReader.h

Decoder SDK Monitor 1.3 Developer Guide

Revision A 13 Nielsen Confidential

5.2. SDK Static Libraries

You may build your application on any of the following platforms:

• Microsoft Windows 8 (64-bit) or later operating system

You may compile the sample application with Visual Studio 2013 or 2015. For

each supported version of Visual Studio, there are two separate sets of libraries:

one built with statically linked C-runtime, and the other built with dynamically

linked C-runtime.

• Linux 64-bits (Nielsen built the package on a CentOS system)

Note The libraries for Linux are not included in the prototype.

Nielsen compiles the sample application with gcc/g++ (version 5.4.0). The Linux

libraries are compiled with the -fPIC option, allowing you to link to executable files,

static libraries, or shared libraries.

5.3. Using the SDK

Below are the objects that the sample application uses to demonstrate the functionality of

the SDK. Note that the source code is provided solely as an example. You should

customize the software to meet the needs of your application. You are responsible for

adding the error-handling capabilities.

• IMonitorSdkCallback: SDK base class from which you must derive your own callback

class

• CMonitorSdkCallback: class you derive from IMonitorSdkCallback to handle three items

that the SDK delivers to you:

• Log messages: you must store these in whatever logging scheme you

support.

• Audio-code reports (delivered in JSON array): you may display the

SID/audio-code-type pairs to meet the requirements of your monitor.

• Alarms/warnings (delivered in JSON array): you may issue these

alarms/warnings in a way that meets the requirements of your monitor.

• CMonitorApi: primary class that your application uses to deliver audio data for

processing

• CMonitorSdkOptions: class that reads and interprets command-line arguments

5.4. IMonitorSdkCallback.h Interface

IMonitorSdkCallback.h defines the abstract base for a callback class that your application

must create. CMonitorApi uses this callback class to deliver audio-code reports

(ResultCallback), log messages (LogCallback), and warnings (AlarmCallback) to your application.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 14 Nielsen Confidential

In the sample application, CMonitorSdkCallback is a simple example of a derived callback

class. As required, CMonitorSdkCallback provides implementations for the pure-virtual

functions, ResultCallback(), LogCallback(), and MonitorCallback(). You must replace

CMonitorCallback with a similar class – one that handles ResultCallback(), LogCallback(), and

AlarmCallback() in a way that is appropriate for your application.

For example source code, refer to the MonitorSdkCallback.cpp/.h files.

5.5. CMonitorSdkParameters Object

The CMonitorSdkParameters class allows you to configure CMonitorApi with audio settings

required to process incoming audio. The class exposes methods allowing you to set:

• Sample Size (16, 24, or 32 bits):

• Set the sample size to 24 bits only if the 24-bit samples are 3-byte-aligned.

• For 24-bit samples aligned in 4-byte blocks, set the sample size to 32, and

set the packing mode to FourBytesMsbPadding or to FourBytesLsbPadding.

• Packing Mode:

• Not required for 16-bit samples. Set to TwoBytesNoPadding as default.

• Set to ThreeBytesNoPadding for 24-bit samples with 3-byte alignment.

• Set to FourBytesMsbPadding or FourBytesLsbPadding for 24-bit samples with 32-bit

alignment.

• Sample Rate: The number of samples per second per channel. Supported

sample rates are 24 kHz and 48 kHz.

5.6. CMonitorApi Object

CMonitorApi is your primary interface to the Monitor SDK libraries. Its constructor accepts

a pointer to the CMonitorSdkParameters object and a pointer to your implementation of the

IMonitorSdkCallback class. If you use the default constructor, you may invoke the

SetParameters() and the RegisterCallback() functions to pass pointers to the parameters and

callback objects.

• void Initialize()

Initialize() configures the application prior to the start of audio processing. You

must pass pointers both to CMonitorSdkParameters and to your implementation of

IMonitorSdkCallback before you call CMonitorApi::Initialize(). After the Initialize()

method returns, you may call CMonitorApi::IsProcessorInitialized() to make certain that

initialization succeeded.

• void GetVersion(char *pName, uint32_t size)

GetVersion() sets <pName> to a string that identifies the version of Monitor SDK.

The size argument (which should be greater than 12) indicates the number of

bytes that you have allocated to pName.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 15 Nielsen Confidential

• void InputAudioData(uint8_t *inBuffer, uint32_t nSize)

InputAudioData() accepts PCM audio data from your application and submits the

data to the audio decoder engine. It is a blocking call that does not return until

the entire buffer has been processed.

• inBuffer points to the audio data to be processed

• nSize specifies the number of bytes of data in inBuffer.

While executing the InputAudioData() function, the SDK library may invoke

ResultCallback() to deliver a report to your application and/or it may invoke

AlarmCallback() to alert your application to current error conditions. Note that the

result and alarm callbacks are invoked at intervals of one minute or greater.

It is also possible that InputAudioData() will invoke one or more calls to LogCallback()

to deliver a status or error message to your application. You should include

Nielsen log messages in your log file.

In addition to decoding the incoming audio buffer, the InputAudioData function

calculates the elapsed time in seconds by dividing the total number of audio

bytes that it has received by the audio data rate. The calculated elapsed-time

value determines the timing of the periodic reports.

Important If there is a period during which CMonitorApi receives no PCM audio, the Monitor SDK clocks do

not advance during that period; as a result, no reports or alarms are generated during the period

that has no audio. If you stop feeding audio to the SDK libraries for any reason, it is your

responsibility to report the dropped audio feed.

6. SDK Sample Application

The sample application demonstrates how to use the Nielsen_Decoder_SDK_Monitor,

but it does not exercise all SDK capabilities. The sample application assumes that the

incoming PCM audio stream is stored as a WAV file. However, your application most

likely will deliver raw PCM audio, not in WAV format. The simplified WAV reader is

provided only for demonstration purposes.

6.1. Parameters Usage

The sample application generates periodic reports, each of which lists the valid audio

codes detected during the past minute. Command-line options allow you to set these

parameters:

-i <infile> -o <output report file> -l <log file> [-c selected channel] [-p packing mode]

Where:

• -i <file> is the full path and file name of the WAV file to process. The sample

application accepts a WAV file as input and extracts audio information from its

header, then passes buffers of PCM audio to the SDK libraries. The libraries

Decoder SDK Monitor 1.3 Developer Guide

Revision A 16 Nielsen Confidential

detect Nielsen Watermarks and generate periodic watermark reports. Because

your monitor most likely processes streaming data, you do not need to manage

an input file.

• -o <output data file> is the full path name of the file that holds the generated reports

and alarms. Because your monitor most likely displays reports and alarms on the

monitor, you do not need to generate an output data file. However, you do need

to parse the JSON string, much as the SDK callback class does.

• -l <log file> is the full path name of the file that holds error and status reports.

• -p <packing mode> is the packing mode, which is required to process audio with 24-

bit samples. When processing WAV files whose audio has 24-bit (or 24-bit

packed as 32-bit) samples, you must specify the packing mode. For audio with

16-bit samples, the -p option is not required, but you may use -p 3.

3 = 16-bit samples, with 2-byte alignment

0 = 24-bit samples, with 3-byte alignment

1 = 24-bit samples, with 4-byte alignment, padding in most significant byte

2 = 24-bit samples, with 4-byte alignment, padding in least significant byte

• -c <selected channel> allows the user to select the left (1) or right (2) channel for

processing (assuming that the input is stereo). You could offer additional options

for processing individual channels of a 5.1-channel audio stream. However, as

an example, a choice of 1 or 2 is adequate to illustrate the process of channel

selection. Remember that surround sound channels and the LFE channel of 5.1

content do not hold Nielsen Watermarks (NAES 6) or CBET codes.

• -h displays an explanation of command-line usage.

6.2. Sample Application Components

The sample application is comprised of these main elements:

• MonitorSdkSampleApplication.cpp file

• CAudioProcessor (.cpp and .h) class

• CMonitorSdkCallback (.cpp and .h) class

• CMonitorSdkOptions (.cpp and .h) class

• CWaveReader (.cpp and .h) class

• CChannelExtractor (.cpp and .h) class

The sample application must statically link to the SDK library (or libraries, for Linux

builds), which provides the underlying functionality on which the sample application

relies.

The remaining portions of Section 6 describe each of the six classes listed above. The

sample application provides source code for each of these components. In order to

illustrate clearly the proper usage of Monitor SDK classes, we have intentionally limited

Decoder SDK Monitor 1.3 Developer Guide

Revision A 17 Nielsen Confidential

the functionality of the sample application, keeping the source code simple and easy to

read.

6.2.1. MonitorSdkSampleApplication File

The MonitorSdkSampleApplcation.cpp file is the main entry point to the sample application. It

instantiates and initializes the CAudioProcessor object, then calls upon the audio processor

to receive and process buffers of PCM audio.

This is the very simple main() function:

int main(int argc, char* argv[])
{
 CAudioProcessor processor;

 // Parse, validate and process all parameters
 // ProcessParameters() returns true if successful.
 processor.ProcessParameters(argc, argv);

 // Initialize processor object with command-line settings.
 // Initialize() returns true if successful.
 if (processor.Initialize())

 // Process the entire input audio file.
 processor.ProcessData();
 processor.Release();
}

6.2.2. CAudioProcessor (.cpp and .h) Object

As you can see from the main() function listed in section 6.2.1, CAudioProcessor exposes

just a few public methods:

• ProcessParameters() creates an instance of CMonitorSdkOptions to read and interpret

command-line arguments and make them available to the CMonitorSdkParameters

class.

• Initialize() creates and initializes CMonitorSdkParameters, CMonitorSdkCallback, and

CChannelExtractor objects, each of which is described in Section 6 of this

document.

• ProcessData() repeatedly reads buffers of data from the WAV file and delivers

those buffers, in sequence, to CMonitorApi::InputAudioData().

• Release() deletes allocated objects and buffers.

6.2.3. CMonitorSdkCallback (.cpp and .h) Object

The CMonitorSdkCallback object handles report callbacks, alarm callbacks, and log

callbacks by implementing the IMonitorSdkCallback interface. Before creating the CMonitorApi

object, your application must create an instance of your customized callback class. Your

application must then pass a callback-object pointer to CMonitorApi.

CMonitorSdkCallback implements the three pure-virtual methods declared in

IMonitorSdkCallback.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 18 Nielsen Confidential

• void ResultCallback(uint32_t elapsed_time, std::string result)

CMonitorApi calls ResultCallback() at one-minute intervals, when it has a summary

report to deliver.

Important If your application runs for less than one minute, the SDK does not invoke the

ResultCallback() function at all).

• The first argument, elapsed_time, indicates the number of seconds that have

elapsed since the beginning of processing. The SDK calculates this value by

dividing the number of bytes of audio that have been processed by the data

rate.

Note The elapsed-time setting is delivered primarily for debug purposes. It is likely that your

monitor displays the current system-clock time.

• The second argument, result, is a JSON string that holds the report

information. The following is an example result string:

{"SummaryReport":[

{"SID":"9000","AudioCodeType":1,"AudioCodeTypeDescription":"N2FD","RawTime":29

14486719,"DateTimeString":"04/22/2019 08:24:31"},

{"SID":"0x1233","AudioCodeType":12,"AudioCodeTypeDescription":"CBL5","RawTime":

1555935840,"DateTimeString":"04/22/2019 12:24:00"},

{"SID":"9000","AudioCodeType":5,"AudioCodeTypeDescription":"NWFD","RawTime":2

93617470,"DateTimeString":"04/22/2019 08:24:30"}]}

The JSON array in the result string is composed of SID / code-type / code-

type-description / raw timestamp / date-time string elements, each of which

identifies an audio code detected during the past minute. The code type

setting may range from 0 through 14 (Table 3). However, codes 0, 3, 8, and

10 are currently undefined and do not appear in any summary reports.

Section 3.1 includes an explanation of the code types in Table 2.

Table 3: Code Types and Descriptions

Code

Type Code

Code Type

Description

1 NAES 2 FD N2FD

2 NAES 2 PC N2PC

4 NAES 2 High Frequency N2HF

5 Nielsen Watermark FD NWFD

6 Nielsen Watermark PC NWPC

7 Nielsen Watermark Commercial Code NWCC

9 CBET Layer 2, SID reported in

hexadecimal format

CBL2

11 CBET Layer 4, SID reported in

hexadecimal format

CBL4

Decoder SDK Monitor 1.3 Developer Guide

Revision A 19 Nielsen Confidential

Code

Type Code

Code Type

Description

12 CBET Layer 5, SID reported in

hexadecimal format

CBL5

13 RT-VOD RT-VOD

14 INFO-SID Info-SID

• void AlarmCallback(uint32_t elapsed_time, std::string warning_list)

CMonitorApi calls AlarmCallback() at one-minute intervals, but only if it has an alert /

warning to deliver.

• The first argument, elapsed_time, indicates the number of seconds that have

elapsed since the beginning of processing. The SDK calculates this value by

dividing the number of bytes of audio that have been processed by the data

rate.

Note The elapsed-time setting is delivered primarily for debug purposes. It is

likely that your monitor will display the current system-clock time.

• The second argument, warning_list, is a JSON string that holds an array of

alarms that were active during the report period that just expired. Each

element of the array lists the warning code and the SID and audio-code type

to which the warning applies. An example warning string with just one array

entry:

{"WarningReport":[{"SID":"9005","AudioCodeType":"NWPC","WarningString":"Insufficie

nt Code Count"}]}

Table 4 shows the coded warnings that may appear in the warning list.

Table 4: Coded Warnings in Warning List

Label Meaning

Audio Code Type Error Watermarks with the same NAES 2 SID

detected in the past minute had conflicting

PC/FD types, probably due to a decoding error

Duplicate Code Error In the past minute, the number of duplicate

watermarks with this SID outnumbered the

number of unique watermarks. A duplicate

watermark is one that has the same SID, type,

and timestamp as a previously reported

watermark.

Insufficient Code Count Issued when three or more of the last five 1-

minute intervals had two or fewer watermarks

with the designated SID but there were at least

four watermarks altogether

Decoder SDK Monitor 1.3 Developer Guide

Revision A 20 Nielsen Confidential

Label Meaning

Timecode Error In the past minute, the number of watermarks

with this SID that had invalid timestamps

outnumbered the number of watermarks with

the same SID that had valid timestamps

• void LogCallback(int_t code, const char *pMessage)

CMonitorApi calls LogCallback() whenever it has a processing error or status

message to report. Unlike the ResultCallback and AlarmCallback, the LogCallback is

invoked immediately if there is a processing error or change in status.

6.2.4. CMonitorSdkOptions (.cpp and .h) Object

The CMonitorSdkOptions object reads and interprets command-line options and makes their

settings available to the calling class. See Section 6.1.

6.2.5. CWaveReader (.cpp and .h) Object

The CWaveReader object parses the WAV file header to retrieve the sample size, channel-

count, and sample rate of the PCM audio stream, and it makes those settings available to

CAudioProcessor. The audio-processor class repeatedly calls CWaveReader:ReadBlock() to

read buffers of data from the WAV PCM file.

6.2.6. CChannelExtractor (.cpp and .h) Object

The CChannelExtractor object extracts a single channel of audio from a multi-channel audio

buffer and delivers the extracted audio to the calling application. The sample application

uses the command-line setting -c <channel> to determine which channel of a stereo pair to

extract.

• If the setting is 1, the sample application extracts the left channel.

• If the setting is 2, it extracts the right channel.

Decoder SDK Monitor 1.3 Developer Guide

Revision A 21 Nielsen Confidential

Appendix: Factors that Can Affect
Decoding

Nielsen Decoder SDK Monitor supports only audio frequencies of 48 kHz and 24 kHz.

Nielsen Watermarks are designed to survive audio compression when the bitrate is

maintained at the recommended level (Table 5). Code recovery may be affected when

the audio is clipped or near silence.

Table 5: Acceptable Audio Compression rates for Code Recovery

Audio Compression Compression Rate

AC3 Stereo 192 Kbps or higher

AC3 5.1 384 Kbps or higher

Enhanced AC3 192 Kbps

MPEG2 audio 192 Kbps or higher

